Text in green is to be part of UCSF building database and may be part of UCOP database

UCSF Building Seismic Ratings
1322-24 $3^{\text {RD }}$ AVENUE
CAAN \#2003
1322-24 3 ${ }^{\text {rd }}$ AVENUE, SAN FRANCISCO, CA 94122

UCSF Campus: Parnassus

[^0]
Building information used in this evaluation

- Architectural Floor Plans, "1322 3 ${ }^{\text {RD }}$ Avenue", dated 10 December 1981 (3 Sheets)
- Architectural Drawings by Scheinhotz Associates and VDK Architects, "UCSF Housing 1322/1324 3 ${ }^{\text {rd }}$ Ave. San Francisco, CA," dated 5 August 1998 (4 sheets).

Scope for completing this form

Architectural drawings were reviewed and an ASCE 41-17 Tier 1 evaluation was performed. A site visit was made on October 31, 2019 where the building exterior and garage space were observed. Access to the crawl space was not available.

Brief description of structure

The building functions as graduate student housing. It was built in 1911 as a duplex home. There are apartment units on the first and second floors over a garage basement with a crawl space. The garage space is used for storage for cleaning services and cleaning products. The main floor plate is approximately 50 ft north-south by 25 ft east-west.

Identification of Levels: Levels are identified on plan as Basement/Lower Garage Level, First Floor, and Second Floor. The site slopes downward toward the north. The garage (approximately $9^{\prime}-0^{\prime \prime}$) is a partial level with a garage to the north and a crawl space to the south. The First and Second Floor (approximately $10^{\prime}-9^{\prime \prime}$) each consist of a twobedroom apartment with a kitchen, bathroom and living/dining room. The hip-shaped roof slopes to a maximum of 10^{\prime} over the second floor. The basement/garage is used as the base of the building for this evaluation.

Foundation system: Existing foundation drawings are not available. It is presumed there are continuous footings below bearing walls. During the site visit on October 31, 2019 continuous concrete stem wall footings were observed around the ground floor level. At the exterior east side of the building, there was a small section of brick over the concrete stem wall.

Structural system for vertical (gravity) load: Drawings showing the existing framing are not available. It is presumed based on the age of the building that wood joists span to load bearing wood framed walls.

Structural system for lateral forces: Drawings showing the existing framing are not available. It is presumed based on the age of the building that a sheathed diaphragm distributes load to the interior and exterior wood framed walls sheathed with gypsum board and/or plaster. There was a ceiling in the garage space, so it could not be determined if the sheathing in the first floor was straight or diagonal sheathing.

Building Code: The building was constructed in 1911, prior to a building code being enacted.
Building Condition: What could be observed of the structure of the building appeared to be in fair condition; however, most of the structure was concealed behind architectural finishes. The wood around the door frame to the garage has degraded. The exterior patio and stair on the south side of the house appeared to be in need of maintenance. Metal brackets for the elevated wood walkway and stair were rusting in some places. The concrete stairs exiting the ground floor at the back of the house appeared to have moved over time under lateral soil pressure from the hillside behind the property. There is a water pipe exiting the back of the building and passing under the elevated wood walkway. The braces of the pipe were corroded and one was unattached to the structure. The vertical hanger for the pipe was also corroded, and unattached to the structure above.

Building response in 1989 Loma Prieta Earthquake: The report titled "Performance of UCSF Buildings During the October 17, 1989 Loma Prieta Earthquake" by Impell Corporation stated the exterior of the building was inspected following the earthquake and no damage was observed. Based on the inspection, the house was determined safe or occupancy.

Brief description of seismic deficiencies and expected seismic performance including structural behavior modes

- The building relies on interior and exterior walls for shear resistance. There is not enough wall present to pass the Tier 1 quick check in the transverse or longitudinal direction in any story.
- Based on the age of construction, the walls between levels are not expected to be detailed to transfer shear and overturning forces between levels.
- The building is located on a sloped site. However, there is a significant length of wall on the downhill side of the building.
- The building is built to the property line with virtually no separation between the neighboring buildings to the north and south. The floor levels do not align with the adjacent buildings due to the steeply sloped site.
- The garage cripple walls were primarily sheathed with plaster and gypsum board, but they appeared to have straight sheathing where some of the plaster was missing. Based on the age of construction, it is assumed the anchor bolts for the sill plate are not adequate.

In a large earthquake, walls may be heavily damaged to the extent that the building leans on the adjacent building for stability. Since neighboring buildings do not possess reliable lateral force-resisting systems, there is some risk to gravity load support.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	Y	Openings at shear walls (concrete or masonry)	N
Load path	Y	Liquefaction	N
Adjacent buildings	Y	Slope failure	N
Weak story	Y	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	N	URM wall height-to-thickness ratio	N
Torsion	N	URM parapets or cornices	N
Mass - vertical irregularity	N	URM chimney	N
Cripple walls	Y	Heavy partitions braced by ceilings	N
Wood sills (bolting)	Y	Appendages	N
Diaphragm continuity	N		

Summary of review of non-structural life-safety concerns, including at exit routes. ${ }^{2}$

The existing drawings exterior elevation (Figure 4) show a chimney, as does satellite imagery. During the site visit, it appeared the chimney had been replaced with a sheet metal flue. The facilities maintenance technician assisting with the site visit noted that the units have fireplaces, but they had been blocked off.

The facilities maintenance technician also noted the water heaters were in the units and located within a closed off closet. Two gas-fueled furnaces were located in the basement garage space. Positive attachment could not be identified from the furnace to the structure; however, the units also appeared squat enough that overturning did not appear to be a concern. The furnaces had flexible connections with the gas line.

The garage partially functions as storage for cleaning products. None of the products appeared to pose a life safety concern if dislodged from the shelving unit.

[^1]| UCOP non-structural checklist item | Life safety
 hazard? | UCOP non-structural checklist item | Life safety
 hazard? |
| :--- | :---: | :---: | :---: |
| Heavy ceilings, feature or ornamentation above large
 lecture halls, auditoriums, lobbies or other areas where
 large numbers of people congregate | None
 Observed | Unrestrained hazardous materials storage | None |
| Heavy masonry or stone veneer above exit ways and
 public access areas | None
 Observed | Masonry chimneys | |
| Unbraced masonry parapets, cornices or other
 ornamentation above exit ways and public access areas | None
 Observed | Unrestrained natural gas-fueled equipment such
 as water heaters, boilers, emergency generators,
 etc. | None
 Observed |

Basis of Seismic Performance Level Rating

The length of wall in the subject building is well below the amount required by the ASCE 41 Tier 1 procedures. The building is listed as Priority B because there is a relatively low risk to occupant life-safety posed by conventional wood-framed construction.

Recommendations for further evaluation or retrofit

No further evaluation of this building is recommended. There is a relatively low risk to occupant life safety posed by this type of building. It is recommended that work to improve the seismic performance of the building be included with any future renovation requiring a building permit.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on November 7, 2019 and are unanimous that the rating is V .

Additional building data	Entry	Notes
Latitude	37.76396	
Longitude	-122.45970	
Are there other structures besides this one under the same CAAN\#	No	
Number of stories above lowest perimeter grade	3	
Number of stories (basements) below lowest perimeter grade	0	
Building occupiable area (OGSF)	3,089	
Risk Category per 2016 CBC 1604.5	11	
Building structural height, h_{n}	35 ft	Structural height defined per ASCE 7-16 Section 11.2
Coefficient for period, C_{t}	0.02	Per ASCE 41-17 equation 4-4
Coefficient for period, β	0.75	Per ASCE 41-17 equation 4-4
Estimated fundamental period	0.288 sec	Per ASCE 41-17 equation 4-4
Site data		
975 yr hazard parameters S_{s}, S_{1}	1.557,0.610	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Site class	C	
Site class basis	Geotech Parameters	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Site parameters F_{a}, F_{v}	1.200,1.400	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)

Ground motion parameters $S_{c s}, S_{c 1}$	1.847,0.854	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
S_{a} at building period	1.847	
Site $V_{\text {s30 }}$	490 m/s	
$V_{s 30}$ basis	Geotech Parameters	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Liquefaction potential/basis	No	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Landslide potential/basis	No	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Active fault-rupture hazard identified at site?	No	
Site-specific ground motion study?	No	
Applicable code		
Applicable code or approx. date of original construction	Built: 1911	
Applicable code for partial retrofit	None	No partial retrofit known
Applicable code for full retrofit	None	No full retrofit known
Model building data		
Model building type North-South	W1 : Wood Light Frames	
Model building type East-West	W1: Wood Light Frames	
FEMA P-154 score	N/A	Not included here because we performed ASCE 41 Tier 1 evaluation.
Previous ratings		
Most recent rating	V	2013 Report
Date of most recent rating	10/7/2013	Basis: Qualitative assessment based on drawing review
$2^{\text {nd }}$ most recent rating	-	
Date of $2^{\text {nd }}$ most recent rating	-	
$3{ }^{\text {rd }}$ most recent rating	-	
Date of $3^{\text {rd }}$ most recent rating	-	
Appendices		
ASCE 41 Tier 1 checklist included here?	Yes	Refer to attached checklist file

Appendix A

Additional Images

Figure 1 - Basement/Garage Floor Plan

Figure 2 - First Floor Plan

Figure 3 - Second Floor Plan

Figure 4 - Exterior Elevation (West Elevation)

Figure 5 - Wood Deterioration at Garage Door

Figure 6 - Building Separation to the North (Left) and South (Right)

Figure 7 - Cleaning Product Storage in Garage

Figure 8 - Gas Furnace in Garage

Figure 9 - Area of Brick Wall Over Concrete Stem Wall in Basement

Figure 10 - Unattached, Corroded Water Pipe Brace and Hanger

Figure 11 - Corrosion Observed at Elevated Wood Walkway

Figure 12 - Concrete Stem Wall on North Side of Building

Appendix B

ASCE 41-17 Tier 1 Checklists (Structural)

UC Campus:	San Francisco		Date:	12/3/2019		
Building CAAN:	2003	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	1322-24 3 ${ }^{\text {rd }}$ Avenue, San Francisco		Initials:	ARK	Checked:	MTP
Building Address:	1322-24 3rd Avenue, San Francisco, CA 94122		Page:	1	of	3
ASCE 41-17						

| LOW SEISMICITY |
| :--- | :--- | :--- | :--- | :--- |
| BUILDING SYSTEMS - GENERAL |

UC Campus:	San Francisco		Date:	12/3/2019		
Building CAAN:	2003	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	1322-24 3rd Avenue, San Francisco		Initials:	ARK	Checked:	MTP
Building Address:	1322-24 3rd Avenue, San Francisco, CA 94122		Page:	2	of	3
	Collapse Prevention Basic Configuration Checklist					

C NC N/A U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3) Comments: Some walls are discontinuous between the ground and first story.
C NC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2: Sec. 5.4.2.4) Comments:
C NC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5) Comments:
C NC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6) Comments:

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)	
GEOLOGIC SITE HAZARD	
	Description
$\begin{array}{llll} C & N C & N / A & U \\ C & C & C & C \end{array}$	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within $50 \mathrm{ft}(15.2 \mathrm{~m})$ under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) Comments:
$\begin{array}{llll} \hline C & N C & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments:

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathrm{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

UC Campus:	San Francisco		Date:	12/3/2019		
Building CAAN:	2003	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	1322-24 $3^{\text {rd }}$ Avenue, San Francisco		Initials:	ARK	Checked:	MTP
Building Address:	1322-24 3rd ${ }^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	3	of	3
ASCE 41-17						

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

\mathbf{C}	NC	\mathbf{N} / \mathbf{A}	\mathbf{U}	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated.
(Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)				
Comments:				

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)

FOUNDATION CONFIGURATION

	Description
$\begin{array}{llll} \hline C & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6 S_{a}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3) Comments: $\begin{aligned} & 0.6 \mathrm{Sa}=0.6 * 1.85=1.11 \\ & \text { Base }=25 \mathrm{ft} \text { height }=35 \mathrm{ft} \\ & \text { Base/Height }=0.71<1.11 \end{aligned}$
$\begin{array}{llll} \hline C & N C & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4) Comments: Site class C.

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

LOW AND MODERATE SEISMICITY	
SEISMIC-FORCE-RESISTING SYSTEM	
	Description
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2 . (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Comments:
$\begin{array}{llll} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} \end{array}$	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1) Comments: Walls in the transverse and longitudinal direction do no pass the quick check stress check. At the ground floor the wall stresses in the quick check are 233 plf in the east-west direction and 739 plf in the north-south direction compared with the allowable 100 plf.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1) Comments: No exterior walls are sheathed with stucco.
$\begin{array}{llll} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} \end{array}$	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1) Comments: Interior walls provide much of the shear resistance, particularly in the transverse (north-south) direction.
$\begin{array}{llll} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1) Comments: Some of the walls considered for the quick check have an aspect ratio greater than 2 to 1 .
$\begin{array}{llll} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2) Comments: Existing drawings showing wall details are not provided but it is presumed there are no ties between floors to transfer load between floors.

Note: C = Compliant NC = Noncompliant N/A = Not Applicable U = Unknown

UC Campus:	UC San Francisco		Date:	12/3/2019		
Building CAAN:	2003	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	1322-24 3 ${ }^{\text {rd }}$ Avenue		Initials:	ARK	Checked:	MTP
Building Address:	1322-24 3 ${ }^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	2	of	4
Collapse Pr	ntion St	SCE 4 Chec	r Builo	19	- W1-	

$\begin{array}{cccc} \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3) Comments: While the street in which the structure is located slopes, it does not appear the change in elevation across the transverse direction of the building is greater than one-half story.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4) Comments: No plywood sheathing could be observed on cripple walls in the basement. It is presumed, based on the age of construction and available existing drawings, that the cripple walls are not sheathed with wood structural panels.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5 -to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5) Comments: The ground floor front wall has significant openings for the garage door. There are no wood structural panels present.
CONNECTIONS	
	Description
$\begin{array}{llll} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	WOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3) Comments: Wood post observed had positive connection to the foundation.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	WOOD SILLS: All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3) Comments: All wood sills in the basement space were concealed by plaster, however based on the age of the building it is anticipated the wood sill bolting is not adequate.
$C \text { NC N/A U }$	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1) Comments: Girders observed were positively connected to columns.

UC Campus:	UC San Francisco		Date:	12/3/2019		
Building CAAN:	2003	Auxiliary CAAN:	By Firm:		Estructure	
Building Name:	1322-24 3rd ${ }^{\text {rd }}$ Avenue		Initials:	ARK	Checked:	MTP
Building Address:	1322-24 3rd ${ }^{\text {re }}$ Avenue, San Francisco, CA 94122		Page:	3	of	4
Collapse Prevention Structural Checklist For Building Type W1-W1A				g	- W1-V	

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)

CONNECTIONS

	Description
$\begin{array}{llll} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete. (Commentary: Sec. A.5.3.7. Tier 2: Sec. 5.7.3.3) Comments: All wood sills in the basement space were concealed by plaster; however, based on the age of the building it is anticipated the wood sill bolting is not adequate.
DIAPHRAGMS	
	Description
$\begin{array}{cccc} \hline C & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1) Comments No split levels or expansion joints.
	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1) Comments: Chords are at one elevation. However. existing drawings showing splice details are not available.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments: Maximum Aspect Ratio $=50 \mathrm{ft}: 25 \mathrm{ft}$.
$\begin{array}{llll} \hline C & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	SPANS: All wood diaphragms with spans greater than $24 \mathrm{ft}(7.3 \mathrm{~m})$ consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) Comments: Existing drawings showing roof sheathing are not available. It is presumed the diaphragm has straight sheathing based on the age of construction, and there are spans greater than 24 feet.
$C \text { NC N/A U }$ $C \subset C$	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than $40 \mathrm{ft}(12 \mathrm{~m})$ and have aspect ratios less than or equal to 4 -to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) Comments: The diaphragm span over the crawl space is greater than 40 feet.

UC Campus:	UC San Francisco		Date:	12/3/2019		
Building CAAN:	2003	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	1322-24 3 ${ }^{\text {rd }}$ Avenue		Initials:	ARK	Checked:	MTP
Building Address:	1322-24 3 ${ }^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	4	of	4
Collpse Prevention Structural checkist For Bufinng ivpe MM MNMA						A

$C \text { NC N/A U }$	OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5) Comments:

Abstract

Appendix C

UCOP Seismic Safety policy Falling Hazards Assessment Summary

Falling Hazards Risk: Low

Appendix D

Quick Check Calculations

Dead loads \& Seismic Weight Calculation			
Roof Level			
Roofing		3 psf	Estimate, Assume Asphalt Shingles
Sheathing		3 psf	Estimate, Assumed 1x Sheathing
Roof Joists		6 psf	Estimate, Assumed 2x10 @16
Ceiling		4 psf	
MEP		0.5 psf	
Misc		0.5 psf	
Interior Walls		8 psf	20 psf (2x4 studs w/ plaster ea side)*4.5ft*100ft/1150 ft ${ }^{2}$
Exterior Walls		8 psf	15 psf (2x4 studs w/ plaster + sheathing)*4.5ft*142ft/1150 ft ${ }^{2}$
Total	Σ	33 psf	
Area	$\mathrm{A}_{\text {roof }}$	$1150 \mathrm{ft}^{2}$	
Seismic Weight	$\mathrm{W}_{\text {R4 }}$	38 kips	

Second Floor Level			
Flooring		2 psf	Estimate, Assume Carpet
Sheathing		3 psf	Estimate, Assumed 1x Sheathing
Wood Framing		6 psf	Estimate, Assumed 2x10 @16
Ceilings		2.25 psf	Estimate, 5/8" Gyp Board
MEP		0.5 psf	
Misc		0.5 psf	
Interior Walls		16 psf	20 psf (2×4 studs w/ plaster ea side)*9ft*100ft/1150 ft ${ }^{2}$
Exterior Walls		17 psf	15 psf (2x4 studs w/ plaster + sheathing)*9ft*142ft/1150 ft ${ }^{2}$
Total	Σ	47 psf	
Area	A_{2}	$1150 \mathrm{ft}^{2}$	
Seismic Weight	$\mathrm{W}_{\text {typ }}$	54 kips	

First Floor Level			
Flooring		2 psf	Estimate, Assume Carpet
Sheathing		3 psf	Estimate, Assumed 1x Sheathing
Wood Framing		6 psf	Estimate, Assumed 2x10 @16
Ceilings		2.25 psf	Estimate, Assume 5/8" Gyp Board
MEP		0.5 psf	
Misc		0.5 psf	
Interior Walls		16 psf	20 psf (2×4 studs w/ plaster ea side)*8ft*80ft/1150 ft ${ }^{2}$
Exterior Walls		13 psf	15 psf (2×4 studs w/ plaster + sheathing/brick veneer)*9ft*110ft/1150 ft ${ }^{2}$
Subtotal	Σ	43 psf	
Area	A_{1}	$1150 \mathrm{ft}^{2}$	
Seismic Weight	$\mathrm{W}_{\text {typ }}$	49 kips	

\left.| Earthquake | Site Parameters - | | |
| :---: | :---: | :---: | :---: |
| | | | |$\right]$

	Building Period	
Empirical factor	C_{t}	0.02 ASCE 41-17 Sec. 4.4.2.4
Roof level height	h	35 ft
Empirical factor	β	0.75 ASCE 41-17 Sec. 4.4.2.4
Fundamental period, $\mathrm{T}=\mathrm{C}_{\mathrm{t}} \mathrm{h}_{\mathrm{n}}{ }^{\beta}=$		0.288 sec
ASCE 41-17 Sec. 4.4.2.4 eqn. 4-4		

	Calculate Base Shear		
Spectral Acceleration	$\mathrm{S}_{\mathrm{a}}=\mathrm{S}_{\mathrm{x} 1} / \mathrm{T}=2.97$		ASCE 41-17, 4.4.2.3
	$\mathrm{S}_{\mathrm{a}, \mathrm{max}}=\mathrm{S}_{\mathrm{xs}}=1.847$	governs	ASCE 41-17, 4.4.2.3
Modification Factor	$\mathrm{C}=1.00$		ASCE 41-17, Table 4-7
Pseudo Seismic Force	$\mathrm{V}=\mathrm{S}_{\mathrm{a}} \times \mathrm{C} \times \mathrm{W}=$	1.85 W	ASCE 41-17, Eqn. 4-1
	$\mathrm{V}=$	$\mathbf{2 6 0} \mathbf{~ k i p s}$	

Seismic Force Vertical Distribution						
Level	Weight (kips)	Height (ft)	$\mathrm{w}_{\mathrm{x}} \mathrm{h}_{\mathrm{x}}$ (kip_ft)	$\mathrm{C}_{\mathrm{vx}}=\mathrm{w}_{\mathrm{x}} \mathrm{h}_{\mathrm{x}} / \sum \mathrm{w}_{\mathrm{x}} \mathrm{h}_{\mathrm{x}}$	$\mathrm{F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{Vx}} \mathrm{V}$	Story Shear, V
Roof	38	35	1335	0.47	123	123
2nd	54	19.75	1058	0.37	97	220
1st	49	9	443	0.16	41	260
		0	0	0.00	0	260
Σ	141	Σ	2836	1.00	260	

Longitudinal Direction (East-West)						
Story	Story Shear (kips)	Length of Wall (ft)	M_{s} Factor (ASCE 41-17, Table 4-8)	Average Story Shear Stress (plf)	Quick Check Shear Capacity (plf)	Pass? $(\mathrm{Y} / \mathrm{N})$
2	123	134	4.5	203	N	
1	220	139	4.5	351	N	
Ground	260	143	4.5	405	200	N

Transverse Direction (North-South)						
Story	Story Shear (kips)	Length of Wall (ft)	M_{s} Factor (ASCE 41-17, Table 4-8)	Average Story Shear Stress (plf)	Quick Check Shear Capacity (plf)	$\begin{aligned} & \text { Pass? } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$
2	123	60	4.5	454	200	N
1	220	45	4.5	1085	200	N
Ground	260	45	4.5	1285	200	N

[^0]: ${ }^{1}$ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

[^1]: ${ }^{2}$ For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where non-structural hazards may occur.

