

Rating form completed by:

ESTRUCTURE www.estruc.com Maryann Phipps, Alix Kottke

Text in green is to be part of UCSF building database and may be part of UCOP database

11-05-2019

UCSF Building Seismic Ratings Alumni House

CAAN #2032

745 Parnassus Avenue, San Francisco, CA 94122 UCSF Campus: Parnassus

Plan

Northwest Elevation

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	V	Findings based on drawing review, Degenkolb ASCE 41-13 evaluation report (Tier 1 and Tier 2) and Estructure ASCE 41-17 Tier 1 evaluation ¹
Rating basis	Tier 2	ASCE 41-13
Date of rating	2019	
Recommended UCSF priority category for retrofit	В	Priority A = Retrofit ASAP Priority B = Retrofit at next permit application for modification
Ballpark total project cost to retrofit to IV rating	High	See recommendations on further evaluation and retrofit.
Is 2018-2019 rating required by UCOP?	Yes	
Further evaluation recommended?	No	

Building information used in this evaluation

- Architectural drawings by Masten and Hurd Architects, "Fraternity House for Xi Psi Phi Building Corporation," dated 1926-04-15 (7 Sheets)
- Structural drawings by Degenkolb Engineers, "PHTS Faculty Alumni House Interim Seismic Retrofit," dated 2018-04-04 (10 sheets)

¹ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

- Report by Degenkolb Engineers, "University of California San Francisco Alumni House Seismic Evaluation," dated 2017-06-09
- Report by Telesis, "Interim Use Risk Analysis for Alumni House San Francisco, California," dated 2017-08-03

Additional building information known to exist

- Architectural Floor Plan Drawings, "Public Programs 745 Parnassus," dated 1981-02-17 (2 Sheets)
- Food Service Equipment Drawings by Berlin Food Company, "Faculty/Alumni House 745 Parnassus S.F. CA," dated 1983-01-04 (2 sheets)
- Architectural Drawings by Alan Lucas + Associates, "UCSF: Alumni House Second Floor," dated 1986-02-07 (11 sheets)
- Architectural Drawings, "ADA Upgrade Works Restroom Modifications Faculty Alumni House," dated 1996-06-07 (4 sheets)

Scope for completing this form

Review of Seismic Evaluation report by Degenkolb Engineers and Interim Seismic Retrofit drawings. The Degenkolb report included an ASCE 41-13 Tier 1 and Tier 2 evaluation. The site was visited in 2013 and again in 2017 during construction of the Interim Seismic Retrofit.

The Degenkolb seismic evaluation and report was based on Life Safety structural and non-structural performance objectives in the BSE-1E earthquake and collapse prevention in the BSE-2E earthquake. In the BSE-1E earthquake, Sxs = 1.036 and $Sx_1 = 0.60$. In the BSE-2E earthquake, Sxs = 1.723 and $Sx_1 = 1.147$.

Brief description of structure

The building functions as a meeting and event space on the first floor and office space on the second floor. The building is L-shaped in plan, with approximately 3,000 square foot at the first and second floors and a 600 square foot partial basement. The building was constructed in 1915, and drawings dated 1927 are available. The building has a gabled roof with Spanish clay tile.

<u>Identification of Levels</u>: Building levels are identified on existing drawings as the Basement, First Level and Second Level. The building site slopes moderately (< 15°) downward to the northwest. The partial basement is at the south side of the building and shown on the foundation plan.

Foundation system: The building is primarily founded on continuous concrete footings beneath the bearing walls.

Structural system for vertical (gravity) load: The gabled roof is framed by 1x straight sheathing over 2x6 at 16" o.c. and a flat ceiling below framed with 2x4 @ 16" o.c. sheathed with gypsum wall board. The first and second floors are framed with 1x straight sheathing over 2x12 @ 16" o.c. The joists are supported by bearing walls. The exterior walls are diagonally sheathed 2x6 studs @ 16" o.c. with stucco on the exterior and plaster on the interior. The interior walls are 2x4 studs sheathed with plaster or gypsum wall board.

<u>Structural system for lateral forces:</u> The building relies on straight sheathed, unblocked diaphragms at the roof and floors levels. The interior and exterior wood framed walls serve as the shear walls for resisting lateral forces. In 2018, cripple walls below the first floor were sheathed with plywood and anchored to the foundation as the first phase of seismic retrofitting.

Building Code: The building was constructed in 1915, prior to a building code being enacted.

<u>Building Condition</u>: During the 2018 seismic retrofit, wood decay was discovered at the foundation level. All significant decay was removed, and framing was repaired to restore it to its original condition. Minor cracking was observed in stucco walls.

<u>Building response in 1989 Loma Prieta Earthquake:</u> The report titled "Performance of UCSF Buildings During the October 17, 1989 Loma Prieta Earthquake" dated 2019-11-17 by Impell Corporation states "This is a two-story wood framed structure. The areas inspected include the exterior and the interior. No structural damage was observed. Old ceiling and wall cracks inside the living room did not reopen. Some new and old cracks which reopened were

observed on the exterior stucco, primarily in the south wall. Based on the inspection, the building was determined safe for occupancy."

Brief description of seismic deficiencies and expected seismic performance including structural behavior modes

Based on the Degenkolb Seismic Evaluation the following deficiencies exist and have not yet been addressed:

- The diagonally sheathed exterior wall shear strength was determined to be deficient in the Tier 1 and Tier 2 evaluations.
- Based on the age of the structure, it is assumed that the walls are not interconnected between floors.
- The straight sheathed diaphragms exceed the maximum allowable spans in the Tier 1 check and were found to be deficient in the Tier 2 check.
- The roof diaphragms do not have adequate connection to wall top plate to transfer load to shear walls as a chord. Chords also do not provide continuity at the reentrant corner.

The following deficiencies were identified in the Degenkolb Seismic Evaluation and addressed in the Interim Seismic Retrofit project designed by Degenkolb Engineers and completed in 2018. This work is listed in the Seismic Evaluation report as Priority/Phase 1 work.

- Cripple walls were sheathed with plywood, walls were interconnected to the first-floor diaphragm, and mudsills were anchored to the concrete foundations.
- Boiler and hot water heater were restrained.
- Hollow clay tile was removed in the basement mechanical room, and walls were framed with wood studs.
- Tall cabinets at the second floor were restrained.
- Spanish clay tile roofing within 3 feet of the edge of the roof around the patio and building entrance was removed and reinstalled with fasteners to the roof framing.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	Y	Openings at shear walls (concrete or masonry)	N
Load path	Y	Liquefaction	N
Adjacent buildings	Ν	Slope failure	N
Weak story	Ν	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	Ν	URM wall height-to-thickness ratio	N
Torsion	Ν	URM parapets or cornices	N
Mass – vertical irregularity	Ν	URM chimney	N
Cripple walls	Ν	Heavy partitions braced by ceilings	N
Wood sills (bolting)	Ν	Appendages	N
Diaphragm continuity	Y		

Summary of review of non-structural life-safety concerns, including at exit routes.²

Masonry chimney is present, but it does not extend very far above the roof.

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None	Unrestrained hazardous materials storage	None
Heavy masonry or stone veneer above exit ways and public access areas	None	Masonry chimneys	Present
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	None	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	None

Basis of Seismic Performance Level Rating

The limited capacity in the diaphragm with relatively high loading due to the Spanish Clay Tile, lack of shear walls with sufficient capacity in the First and Second Level, and lack of positive connection between lateral force resisting systems on the First and Second Level contribute to the rating of V. The completion of the Interim Seismic Retrofit work which corrected the most serious risk to occupant life-safety, resulted in assignment to Priority Category B.

Recommendations for further evaluation or retrofit

Complete seismic improvements identified in the Seismic Evaluation Report by Degenkolb Engineers.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on October 10, 2019 and are unanimous that the rating is V.

Additional building data	Entry	Notes
Latitude	37.76214	
Longitude	-122.46159	
Are there other structures besides this one under the same CAAN#	No	
Number of stories above lowest perimeter grade	2	
Number of stories (basements) below lowest perimeter grade	1	
Building occupiable area (OGSF)	7,210	
Risk Category per 2016 CBC 1604.5	П	
Building structural height, h _n	25 ft	Structural height defined per ASCE 7-16 Section 11.2
Coefficient for period, Ct	0.02	Per ASCE 41-17 equation 4-4
Coefficient for period, eta	0.75	Per ASCE 41-17 equation 4-4
Estimated fundamental period	0.224 sec	Per ASCE 41-17 equation 4-4
Site data		
975 yr hazard parameters S_s , S_1	1.561, 0.617	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)

² For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where non-structural hazards may occur.

Site class	С	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Site class basis	Geotech Parameters	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Site parameters F_a , F_v	1.200,1.400	
Ground motion parameters Scs, Sc1	1.873, 0.863	
S_a at building period	1.873	
Site V _{s30}	430 m/s	
V _{s30} basis	Geotech Parameters	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Liquefaction potential/basis	No	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Landslide potential/basis	No	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Active fault-rupture hazard identified at site?	No	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Site-specific ground motion study?	No	
Applicable code		
Applicable code or approx. date of original construction	Built: 1915	
Applicable code for partial retrofit	2016 CEBC	
Applicable code for full retrofit	None	No full retrofit known
Applicable code for full retrofit Model building data	None	No full retrofit known
Applicable code for full retrofit Model building data Model building type North-South	None W1 : Wood Light Frames	No full retrofit known
Applicable code for full retrofit Model building data Model building type North-South Model building type East-West	None W1 : Wood Light Frames W1: Wood Light Frames	No full retrofit known
Applicable code for full retrofit Model building data Model building type North-South Model building type East-West FEMA P-154 score	None W1 : Wood Light Frames W1: Wood Light Frames N/A	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation.
Applicable code for full retrofit Model building data Model building type North-South Model building type East-West FEMA P-154 score Previous ratings	None W1 : Wood Light Frames W1: Wood Light Frames N/A	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation.
Applicable code for full retrofit Model building data Model building type North-South Model building type East-West FEMA P-154 score Previous ratings Most recent rating	None W1 : Wood Light Frames W1: Wood Light Frames N/A	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report
Applicable code for full retrofitModel building dataModel building type North-SouthModel building type East-WestFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent rating	None W1 : Wood Light Frames W1: Wood Light Frames N/A V 06/09/2017	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report See Report in Appendix D
Applicable code for full retrofit Model building data Model building type North-South Model building type East-West FEMA P-154 score Previous ratings Most recent rating Date of most recent rating 2 nd most recent rating	None W1 : Wood Light Frames W1: Wood Light Frames N/A V 06/09/2017 V	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report See Report in Appendix D 2013 Report
Applicable code for full retrofitModel building dataModel building type North-SouthModel building type East-WestFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent rating2nd most recent ratingDate of 2nd most recent rating	None W1 : Wood Light Frames W1: Wood Light Frames N/A V 06/09/2017 V 10/7/2013	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report See Report in Appendix D 2013 Report Basis: Qualitative assessment based on drawing reviewed
Applicable code for full retrofitModel building dataModel building type North-SouthModel building type East-WestFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent ratingDate of 2nd most recent ratingDate of 2nd most recent rating3rd most recent rating	None W1 : Wood Light Frames W1: Wood Light Frames N/A V 06/09/2017 V 10/7/2013	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report See Report in Appendix D 2013 Report Basis: Qualitative assessment based on drawing reviewed
Applicable code for full retrofitModel building dataModel building type North-SouthModel building type East-WestFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent rating2nd most recent ratingDate of 2nd most recent rating3rd most recent ratingDate of 3rd most recent rating	None W1 : Wood Light Frames W1: Wood Light Frames N/A V 06/09/2017 V 10/7/2013 - -	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report See Report in Appendix D 2013 Report Basis: Qualitative assessment based on drawing reviewed
Applicable code for full retrofitModel building dataModel building type North-SouthModel building type East-WestFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent ratingDate of 2nd most recent ratingDate of 3rd most recent ratingDate of 3rd most recent ratingDate of 3rd most recent ratingAppendices	None W1 : Wood Light Frames W1: Wood Light Frames N/A V 06/09/2017 V 10/7/2013 - -	No full retrofit known Not included here because we performed ASCE 41 Tier 1 evaluation. 2017 Degnekolb Report See Report in Appendix D 2013 Report Basis: Qualitative assessment based on drawing reviewed

Appendix A

Additional Images

ESTRUCTURE www.estruc.com

Figure 2 - Crawl Space Prior to Interim Seismic Retrofit

Figure 3- First Level

Figure 4 – Photo Second Level

Figure 5- West Building Elevation

Appendix B

ASCE 41-17 Tier 1 Checklists (Structural)

	ι	JC Ca	ampu	IS: UCSF Parn	assus	Date:	November 5, 2019				
	Buil	lding	CAA	N: 2032	Auxiliary CAAN:	By Firm:		Estructure			
	Bui	lding	Nam	e: Alumni House Initials: ARK Checked:							
Building Address: 745 Parnassus Ave, San Francisco, CA 94122 Page: 1 of							3				
	ASCE 41-17 Collapse Prevention Basic Configuration Checklist										
LC	W :	SEI	SM	ICITY							
BU	ILD	NG	SYS	STEMS - GENERAL							
					Desc	ription					
C ©	NC O	N/A O	0	LOAD PATH: The structure contains a serves to transfer the inertial forces as: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1)	complete, well-defined sociated with the mass	d load path, including of all elements of the	structural el building to t	ements and conn he foundation. (C	ections, that Commentary:		
				Comments.							
C	NC O	N/A	O	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2) Comments:							
C	NC O	N/A ©	U O	MEZZANINES: Interior mezzanine leve force-resisting elements of the main st Comments:	els are braced indeper tructure. (Commentary	ndently from the main : Sec. A.2.1.3. Tier 2:	structure or Sec. 5.4.1.	are anchored to 3)	the seismic-		
BU	ILD	NG	SYS	STEMS - BUILDING CON	FIGURATION						
					Desc	ription					
C	NC O	N/A	U O	WEAK STORY: The sum of the shear less than 80% of the strength in the ac Comments:	r strengths of the seisr djacent story above. (C	nic-force-resisting sys commentary: Sec. A2.	stem in any .2.2. Tier 2:	story in each dir Sec. 5.4.2.1)	rection is not		
C ©	NC O	N/A O	U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force- resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2) Comments:							
C	NC O	N/A C	U O	VERTICAL IRREGULARITIES: All ver (Commentary: Sec. A.2.2.4. Tier 2: Se Comments:	tical elements in the se	eismic-force-resisting	system are	continuous to the	e foundation.		

UC Campus:	UCSF Parna	Parnassus Date: November 5, 2019			9	
Building CAAN:	2032	Auxiliary CAAN:	By Firm:	Estructure		
Building Name: Alumni House Initials: ARK Checked:						MTP
Building Address:	745 Parnassus Ave, San F	rancisco, CA 94122	Page:	2	of	3
ASCE 41-17 Collapse Prevention Basic Configuration Checklist C NC N/A U GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30 in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier Sec. 5.4.2.4) Comments:						
C NC N/A U MA C C C C C C C C C C C C C C C C C C C	ASS: There is no change in effective ezzanines need not be considered. (comments: DRSION: The estimated distance be e building width in either plan dimens comments:	e mass of more than 50% fr Commentary: Sec. A.2.2.6. ⁻ tween the story center of ma sion. (Commentary: Sec. A.2	om one story Fier 2: Sec. 5.4 ass and the sto .2.7. Tier 2: Se	to the next. A.2.5) Dry center of ec. 5.4.2.6)	Light roofs, penti	nouses, and

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

				Description
с (•	NC O	N/A	U O	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2m) under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) Comments:
C ©	NC O	N/A C	U O	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments:
C 🕑	NC O	N/A O	U O	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) Comments:

UC Campus	UCSF Parna	UCSF Parnassus Date: November 5, 2019			9				
Building CAAN	l: 2032	Auxiliary CAAN:		By Firm:		Estructure			
Building Name	e: Alumni Ho	use		Initials:	ARK	Checked:	MTP		
Building Address	3: 745 Parnassus Ave, San F	rancisco, CA 🤅	94122	Page:	3	of	3		
ASCE 41-17 Collapse Prevention Basic Configuration Checklist									
HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)									
FOUNDATION (CONFIGURATION								
			Descriptio	n					
C NC N/A U (○ ○ ○ ○ ○ ^t	OVERTURNING: The ratio of the least the building height (base/height) is grea	horizontal dime ater than $0.6S_a$.	ension of the s . (Commentar	seismic-force-i y: Sec. A.6.2.1	resisting sys 1. Tier 2: Seo	tem at the founda c. 5.4.3.3)	ation level to		
	Comments:								
	Base = 29 feet / Height = 25 feet =	1.16 >0.6 Sa	= 0.6 * 1.87 =	1.12					
C NC N/A U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)								
	Comments:								
	Site Class C								

UC Campus:	UCSF	Parnassus	Date:	ate: November 5, 2019			
Building CAAN:	2032	Auxiliary CAAN:	By Firm:	Estructure			
Building Name:	Alu	mni House	Initials:	ARK	Checked:	МТР	
Building Address:	745 Parnassus Ave	Page:	1	of	4		
		ASCE 41-17					

Collapse Prevention Structural Checklist For Building Type W1-W1A

LOW AND MODERATE SEISMICITY

SEISMIC-FORCE-RESISTING SYSTEM

			Description					
C NC	C N/A	U ©	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Comments:					
C NC	N/A	U O	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1)					
			Structural panel sheathing 1,000 lb/ft (14.6 kN/m)					
			Diagonal sheathing 700 lb/ft (10.2 kN/m)					
			Straight sheathing 100 lb/ft (1.5 kN/m)					
			All other conditions 100 lb/ft (1.5 kN/m)					
C NC	N/A	U 0	Comments: See Degenkolb Seismic Evaluation Report. STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1) Comments:					
© 0	°, N/A	Ö	Comments:					
C NC	0 N/A	U O	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1) Comments:					

		UC C	Camp	ous:	UCSF Parna	ISSUS		Date:	e: November 5, 2019			
	Bu	ilding	g CA	AN:	2032	Auxiliary		By Firm:	Estructure			
	Bu	uilding	g Na	me:	Alumni Ho	use		Initials:	ARK Checked: MTP			
	Build	ding A	- Addre	ess:	745 Parnassus Ave, San F	rancisco, CA 94	122	Page:	2	of	4	
C O	ASCE 41-17 Collapse Prevention Structural Checklist For Building Type W1-W1A C NC N/A U WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2) Comments:											
C ©	NC O	N/A C	0	HILLS shear Corr	SIDE SITE: For structures that are to walls on the downhill slope have ar the downhill slope have a structure and the downhill slope have a structure at the downhill slope have a structure at the downhill slope have at the downhill slope	aller on at least c n aspect ratio less	ne side by s than 1-to-	more than one 1. (Commentar	-half story b y: Sec. A.3.	ecause of a slop 2.7.6. Tier 2: Sec	ing site, all . 5.5.3.6.3)	
C	NC O	N/A C	0	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4) Comments: Addressed in interim seismic upgrade.								
0	©	N/A	Ċ	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5) Comments:								
co	NNE	ECTI	ION	S								
						De	scription	l			_	
C	NC O	N/A	U O	WOC 5.7.3 Corr	VOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec7.3.3)							
C	NC O	N/A O	U O	WOC Com A	D SILLS: All wood sills are bolted to Iments: ddressed in interim seismic upgrade	o the foundation.	(Commenta	ary: Sec. A.5.3	4. Tier 2: So	ec. 5.7.3.3)		
C O	NC O	N/A ⊙	0	GIRD the gi Com	DER-COLUMN CONNECTION: The irder and the column support. (Com ments:	re is a positive c mentary: Sec. A.	onnection (5.4.1. Tier 2	using plates, co 2: Sec. 5.7.4.1)	onnection h	ardware, or strap	s between	

		UC C	Camp	UCSF Parna	ssus	Date:	Ν	lovember 5, 201	9
	Building CAAN: 2032 Auxiliary CAAN:				By Firm:	Estructure			
	Building Name: Alumni House			Initials:	ARK	Checked:	MTP		
	Build	ding A	Addre	ess: 745 Parnassus Ave, San F	rancisco, CA 94122	Page:	3	of	4
	ASCE 41-17 Collapse Prevention Structural Checklist For Building Type W1-W1A HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)								
со	NNE	ΞΟΤΙ	ON	S					
					Descripti	on			
C ⊛	NC C	N/A C	U	WOOD SILL BOLTS: Sill bolts are spac concrete. (Commentary: Sec. A.5.3.7. Tie	ed at 6 ft or less with ac er 2: Sec. 5.7.3.3)	ceptable edge a	nd end dista	nce provided for	wood and
				Comments:					
	Addressed in Interim Seismic Upgrade.								
DIA	DIAPHRAGMS								
	Description								
C	NC	N/A	U	DIAPHRAGM CONTINUITY: The diaphi (Commentary: Sec. A.4.1.1. Tier 2: Sec	agms are not composed 5.6.1.1)	l of split-level flo	ors and do	not have expans	sion joints.
e	0	0	Ŭ.,	Comments					
С	NC	N/A	U	ROOF CHORD CONTINUITY: All chord	elements are continuous	, regardless of c	hanges in ro	of elevation. (Co	mmentary:
0	Θ	0	0	Comments:					
С	NC	N/A	U	STRAIGHT SHEATHING: All straight-sh	neathed diaphragms hav	e aspect ratios	less than 2-	to-1 in the direc	tion being
•	0	0	0	considered. (Commentary: Sec. A.4.2.1.	Tier 2: Sec. 5.6.2)				
				comments:					
	NC			SPANS: All wood diaphragms with spans	greater than 24 ft (7.3 m) consist of wood	etructural pa	anels or diagonal	sheathing
Ö	⊙	Ô	õ	(Commentary: Sec. A.4.2.2. Tier 2: Sec.	5.6.2)				sheathing.
				Comments:					

	UC (Camp	ous:	UC	SF Parna	ssus		Date:	1	November 5, 201	9
Βι	uilding	g CA	AN:	V: 2032 Auxiliary CAAN: By Firm: Estructure							
В	Building Name: Alumni House Initials: ARK Checked: A						МТР				
Building Address: 745 Parnassus Ave, San Francisco, CA 94122 Page: 4			of	4							
Co	ollap	ose	Pre	evention Stru	A uctura	SCE 4 ^r al Chec	1-17 klist Fo	or Build	ling Ty	/pe W1-V	V1A
C NC	N/A C	U O	DIAGO diaphr Sec. A Com i	DNALLY SHEATHED AN agms have horizontal sp .4.2.3. Tier 2: Sec. 5.6.2 ments:	D UNBLO ans less th)	CKED DIAPH an 40 ft (12 m	RAGMS: All d i) and have a	iagonally shea spect ratios les	thed or unbl s than or eq	ocked wood struc ual to 4-to-1. (Co	tural panel mmentary:
C NC O O	N/A ©	U O	OTHE bracing	R DIAPHRAGMS: The d g. (Commentary: Sec. A. ments:	liaphragms 4.7.1. Tier	do not consi 2: Sec. 5.6.5	st of a system	n other than wo	ood, metal d	leck, concrete, or	[•] horizontal

Appendix C

UCOP Seismic Safety policy Falling Hazards Assessment Summary

	UC Campus: UCSF Parnassus Date: November 5, 2019								
l	Building CAAN:2032Auxiliary CAAN:By Firm:Estructure								
	Building Name:Alumni HouseInitials:ARKChecked:MTP								
Building Address: 745 Parnassus Ave, San Francisco, CA 94122 Page: 1 0						of	1		
UCOP SEISMIC SAFETY POLICY Falling Hazard Assessment Summary									

	Description
P N/A □ ⊠	Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate (50 ppl or more) Comments:
P N/A □ ⊠	Heavy masonry or stone veneer above exit ways or public access areas Comments: Clay tile roof restrained in completed interim seismic upgrade.
P N/A □ ⊠	Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas Comments:
P N/A □ ⊠	Unrestrained hazardous material storage Comments:
P N/A ⊠ □	Masonry chimneys Comments: Masonry chimney is present, but it does not extend very far above the roof.
P N/A □ ⊠	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc. Comments:
P N/A	Other: Comments:
P N/A	Other: Comments:
P N/A	Other: Comments:

Falling Hazards Risk: Moderate

Appendix D

2017 Degenkolb Seismic Evaluation Report

University of California San Francisco Alumni House Seismic Evaluation.

UCSF Alumni House Seismic Evaluation

Final

June 9th, 2017 Degenkolb Job Number B7901001.00

Prepared by:

Robert M. Graff Principal Matthew Namy Design Engineer

CONTENTS

1.0 INTRODUCTION.	2
1.1 Building Description	2
1.2 Design Standards	2
2.0 SITE DESCRIPTION AND SEISMICITY	2
3.0 SEISMIC EVALUATION	3
3.1 As Built Information	4
4.0 STRUCTURAL DEFICIENCIES	5
4.1 Shear Walls	5
4.2 Diaphragms	5
4.3 Connections	5
4.4 Non-Structural	5
5.0 RECOMMENDATIONS AND PROPOSED STRENGTHENING SCHEMES	6
5.1 Shear Walls	6
5.2 Diaphragms	6
5.3 Connections	7
5.4 Non-Structural	7
5.5 Interim Seismic Retrofit	7
5.6 Building Replacement	8
5.7 Cost Estimate Information	8
6.0 ARCHITECTURAL EVALUATION	9
6.1 General Architectural Considerations for Seismic Retrofit Scope	9
6.2 Scenario 1 – No Historic Designation; No Change of Use	10
6.3 Scenario 2 – Historic Designation; No Change of Use	12
6.4 Scenario 3 – No Historic Designation; Change of Use	12
6.5 Scenario 4 – Historic Designation; Change of Use	14
7.0 COST ESTIMATE	15
APPENDIX A: Seismic Retrofit Figures	

APPENDIX B: ASCE 41 Checklist APPENDIX C: Structural Calculations

1.0 INTRODUCTION

This report summarizes the findings of the structural seismic evaluation for the Alumni House on the University of California San Francisco Campus located at 745 Parnassus Avenue. Architectural and structural drawings provided for our review include the following:

- Architectural Plans by Masten and Hurd Architects (UCSF File No 2797)
- Food Service Equipment Drawings by Berlin Food Company (UCSF File No. 2850) dated 01/8/83
- Electrical Plan by Alan Lucas + Associates (UCSF File NO 3122) dated 02/7/85
- Floor Plans by ehdd dated 02/15/13

The Alumni house currently functions as meeting / event spaces on the first floor and contains offices on the second floor. The building is a risk category II building. The structural seismic evaluation was performed per ASCE 41-13 with performance criteria as defined by the UC Seismic Policy.

1.1 BUILDING DESCRIPTION

The Alumni House is a two-story wood framed building with a partial basement. The building is approximately 3,000 square feet in plan at each floor and is in L-shaped in plan. The building is, 69feet in the east-west direction and 73 feet in the north-south direction. There is a 600 square foot partial basement in the southwest corner of the building.

The exterior wall of the building is framed with 2x6 at 16" oc. The walls are finished with stucco on the exterior and with 5/8" wood lath and plaster on the interior. Interior walls are typically 2x4 construction with plaster or gypsum wall board. The roof is a gabled roof with Spanish clay tile. The roof is framed with 2x6's at 16" oc and 1x straight sheathing. There is a flat ceiling below framed with 2x4's at 16" oc and sheathed with gypsum wall board. The 2^{nd} and first floors are framed with 2x12's @ 16" oc and sheathed with 1x flooring applied directly over the framing. The flooring runs perpendicular to the framing and as such has been treated as straight sheathing. The building is supported on concrete foundations.

1.2 DESIGN STANDARDS

The following building code and designed standards were used for the evaluation report:

- UC Interim Seismic Safety Policy (UC-CR-17-0316)
- 2012 International Building Code.
- ASCE 41-13, Seismic Evaluation and Retrofit of Existing Buildings; American Society of Civil Engineers, 2013.

2.0 SITE DESCRIPTION AND SEISMICITY

The Alumni House is located on a mildly sloped site. There is no geotechnical report available for this site. Based on other campus sites it is known that the Site Class varies between C and D. For the purposes of this evaluation we have used site class D.

The building is located in an area of very-high seismicity Table 1 below lists the seismic hazard parameters for ASCE 41-13, as obtained from the USGS website.

ASCE 41 BSE-2E $S_{XS,2E} = 1.723$ $S_{X1,2E} = 1.147$ ASCE 41 BSE-1E $S_{X1,2E} = 1.036$	Earthquake	Seismic Hazard Parameter
$S_{X1,2E} = 1.147$ ASCE 41 BSE-1E $S_{X2,UE} = 1.036$	ASCE 41 BSE-2E	$S_{XS,2E} = 1.723$
ASCE 41 BSE-1E $S_{VG, FE} = 1.036$		$S_{X1,2E} = 1.147$
DSL TI DSL TL DSL TL	ASCE 41 BSE-1E	$S_{XS,1E} = 1.036$
$S_{X1,1E} = 0.60$		$S_{X1,1E} = 0.60$

Table 1: USGS Seismic Parameters

3.0 SEISMIC EVALUATION

For the evaluation of the Alumni House we have used ASCE 41-13, *Seismic Evaluation and Retrofit of Existing Buildings*, published by the American Society of Civil Engineers. We have evaluated the building per the UC Seismic Policy and developed a retrofit to achieve a Rating Level-III ("Good" under the previous UC Seismic Policy) by meeting the CBC Occupancy Category I-III. To provide the CBC Occupancy performance, a building performance objective of Life Safety (LS) under the Basic Safety Earthquake-1E seismic hazard, and of Collapse Prevention (CP) under the Basic Safety Earthquake-2E seismic hazard were each considered in the evaluation of the building.

LS building performance indicates significant building damage may occur and some permanent drifts after the seismic event, but sufficient residual building strength and stiffness is expected to remain to resist partial and/or total collapse. Overall risk of life-threatening injuries due to structural damage is expected to be low. Building re-occupancy may need to be restricted until repairs are completed. The building is excepted to be repairable, but economic considerations may be prohibitive. Nonstructural components may experience damage, but falling hazards are not expected. CP building performance indicates severe overall building damage with large permanent drifts after the seismic event. There will be small residual stiffness and strength to resist additional lateral loads, however, gravity load resisting systems are expected to remain functional. Building should not remain occupied. Nonstructural components are expected to experience extensive damage.

The Basic Performance Objective for the Building are summarized in Table 2 below.

Risk Category	BSE-1E	BSE-2E
III	Life Safety (LS) Structural Performance	Collapse Prevention (CP)
111	Life Safety (LS) Non-Structural Performance	Non-Structural Performance Not Considered

Seismic Hazard Level

Table 2: Building 8 Performance Objective

The goal of the ASCE 41 seismic evaluation is to identify the "weak links" in a building's seismic-force-resisting-system (SFRS) that can lead to performance below that of the intended building performance objective. The methodology uses a series of checklists that address

possible hazards. Checklists included in the Standard are provided for all the major structural systems, nonstructural elements, and geologic hazards. In the Tier 1 level screening, the evaluating engineer addresses each statement and determines whether it is compliant (C), non-compliant (NC), unknown (U), or non-applicable (NA). Compliant statements identify conditions that are acceptable. Non-compliant and unknown statements identify conditions that are in need of further investigation in a Tier 2 level screening. Further investigation may include specific calculations stipulated in the ASCE 41 Standard, or may require a detailed building analysis.

During the Tier 1 evaluation of the Alumni House, several checklist items were found to be NC or U (Tier 1 Checklist provided in Appendix A). Therefore, a more detailed Tier 2 analysis was performed to further evaluate the performance of the building, and specifically, of the NC and U statements from the Tier 1 checklist. The Tier 2 analysis was performed using the Linear Static Procedure in ASCE 41. The acceptance criteria of the potential building deficiency depends on whether the component is considered force-controlled or deformation-controlled by ASCE-41. Force-controlled components (actions) do not demonstrate substantial post yield capacity, and therefore energy dissipation is not expected for the given components. Force-controlled components are evaluated based upon their lower bound capacities and are expected to remain elastic at the seismic hazard considered. Deformation-controlled components (actions) are expected to demonstrate substantial post-yield capacity and energy dissipation. The demand-capacity usage ratio of these components can therefore be exceeded by a specified m-factor representative of the components' inherent nonlinear deformation capacity. The specified m-factor representative of the components' inherent nonlinear deformation per the performance objected (i.e. LS or CP). The findings of the Tier 2 Evaluation are detailed in Section 3.2 of this report.

Based on the findings of the evaluation the building will require a significant retrofit or replacement of the building in order to achieve a UC Rating Level III.

3.1 AS-BUILT INFORMATION

The existing drawings referenced in Section 1.0 of this report were used for the Tier 1 and Tier 2 evaluations. In addition, the detailing shown on the drawings was verified from visual inspection during two site visits. The drawings are relatively incomplete, but provide architectural layouts and dimensions. No structural drawings were available for the building. All structural information was determined through the site investigation.

4.0 STRUCTURAL DEFICIENCIES

Based on the ASCE 41 procedure and analysis described above, the following structural deficiencies have been identified. Due to the deficiencies described below, it is expected the building will currently not meet the intended performance objectives of LS and CP under their respective ground shaking hazard. See appendix B for the supporting structural calculations.

4.1 Shear Walls

The shear wall stress check found that the existing diagonally sheathed exterior walls could not resist the required seismic loads and are non-compliant under the Tier-1 evaluation. This was further evaluated under the Tier-2 methodology and still found to be deficient and will require retrofit.

No specific inspection of the wall connections through the floors could be made without destructive investigation. However, based on the age of the building it is easily assumed that no hold downs are present at the walls which is considered non-compliant under the Tier-1 evaluation. This deficiency will require retrofit.

On the West side of the basement level there are cripple walls. The remainder of the building is framed directly to the foundation. The cripple walls are not sheathed in plywood and are non-compliant under the Tier-1 evaluation. This deficiency will require retrofit.

4.2 Diaphragms

The roof and floor diaphragms are sheathed with straight sheathing and exceed the maximum allowed spans. As such they are non-compliant under the Tier-1 evaluation. This was further evaluated under the Tier-2 methodology and still found to be deficient and will require retrofit.

The roof does not have adequate connection to the wall plates which would act as the diaphragm cords. There is also no continuity of the diaphragm cords through the reentrant corner of the diaphragm. As such the roof chords are non-compliant under the Tier-1 evaluation. This deficiency will require retrofit.

4.3 Connections

The building is framed to wood sills that rests on the perimeter building foundations. However, there were no sill bolts present to transfer shear forces into the building foundation. As such the sill connections are non-compliant under the Tier-1 evaluation. This deficiency will require retrofit.

4.4 Non-Structural

The following non-structural items were noted as being non-compliant.

- The boiler and hot water heater were both noted as being unrestrained.
- The mechanical room in the basement was constructed using hollow clay tile.

- Tall filing cabinets at the second floor were noted as being unrestrained.
- The Spanish clay tile roofing is anticipated to not be anchored to the roof sheathing or at least not anchored per current standards. This creates a potential falling hazard.

5.0 RECOMMENDATIONS AND PROPOSED STRENGTHENING SCHEMES

We have developed a pre-schematic level retrofit scheme for the building. See Appendix A for the structural strengthening plans.

5.1 Shear Walls

A number of walls were selected to be sheathed with plywood to provide significantly increased shear capacity. The majority of the walls selected are exterior walls, but a few interior walls were also required. The exterior walls are expected to be sheathed with plywood on the interior face. This will require removal of the gypsum or plaster, installation of the plywood sheathing, and then installing a gypsum board finish. The interior walls can be sheathed from either side and should be dictated by access and existing finishes.

Some of these interior walls do not extend to a foundation. In these cases, a new framed wall and foundation will be constructed in the crawlspace. These same interior walls also do not extend up to the roof diaphragm. A new framed wall will be constructed in the attic space from the ceiling level up to the pitched roof level.

The exterior wall on the East side of the exterior patio on the second level is offset from the first floor. This makes transferring the overturning forces from the 2nd floor shear walls difficult. To alleviate this the complete length of this wall at the 2nd floor will be sheathed and the window openings will be strapped such that the wall acts as one perforated shear wall instead of individual wall segments. This will significantly reduce or eliminate any uplift forces.

Hold downs will be installed at all new shear walls. In addition, sill nails will be installed at all shear walls to supplement the existing nailing.

The West end of the South wing is framed with a cripple wall at the crawlspace level. This portion of the wall will have sill bolts and clips installed as is done at all the other perimeter foundations, but in addition, plywood sheathing will be installed as well.

5.2 Diaphragms

The roof diaphragm will be retrofitted using plywood. This will require the removal of the tile roofing, the installation of blocking, plywood, straps at the reentrant corner, and reinstallation of a new tile roof.

The second floor will be retrofitted using plywood over the top of the existing floor sheathing. It will require the removal of the existing flooring, installation of the plywood between the existing partitions, installation of clip angles along the length of the partitions, and installation of new flooring.

The first floor diaphragm does not require retrofit as it is directly attached to the foundation of the building without cripple walls for the majority of the perimeter. This alleviates the need for any diaphragm retrofit work on the first floor.

5.3 Connections

Sill bolts are needed around the perimeter of the building. In addition, clip angles will need to be installed between the sill and rim joist as well as between the rim joist and the first floor diaphragm.

5.4 Non-Structural

Seismic bracing of non-structural elements is required per ASCE 41. The majority of the existing non-structural equipment was not anchored and braced based on our limited field review. However, most of the equipment and utilizes are exempt from these requirements due to their size.

The non-structural components identified in our site visits that will require anchorage or bracing are as follows:

Boiler – Located in basement

Hot Water heater – Located in basement

Tall filing cabinets $(qty - 8) - Located on 2^{nd}$ floor

In addition, the walls of the mechanical room in the basement are constructed of hollow clay tile. These wall should be demolished and replaced with wood framed walls and sheathed in gypsum board to meet the necessary fire rating.

Finally, when the Spanish clay tile roof is reinstalled it will need to be wire tied and fastened to the roof sheathing per CBC section 1507.3.6.

5.5 Interim Seismic Retrofit

The University has funding to implement a portion of the seismic retrofit work, but not the complete retrofit. Since the retrofit work is voluntary and the work to be implemented will improve the seismic performance this is an acceptable approach. The retrofit should be completed in the following phases.

Priority / Phase	Retrofit Scope
1	Basement Level Sill bolting, cripple wall sheathing, and non-structural anchorage at all levels.
2	Roof sheathing, blocking, and reentrant corner collectors.
3	Shear wall sheathing and hold downs at all levels and new foundations under added walls.
4	Diaphragm plywood at the 2 nd floor.

The seismic review panel has also studied the probability of a seismic event and the capacity of the partially retrofitted building and found a statistically acceptable time frame for continued use. This was determined for both the building in its current state and after a partial retrofit. Please refer to their Use Plan for further details.

5.6 Building Replacement

We understand there is limited space on campus and this building could be demolished and replaced with a new building. The University would need to consider relocation of the services in the building and what potential future use of the site would serve. See the architectural report for additional discussion on alternate uses.

The existing building has a significant number of issues to retrofit. Each piece of the retrofit has fairly significant operational and logistical hurdles. While the retrofit will achieve the required seismic performance objective a new building would likely provide even better performance.

5.7 Cost Estimate Information

The following are estimates for schematic structural elements that may be used in developing the cost estimate. The quantities indicated are schematic in nature and are subsequent to change as the design progresses.

Wood:	Doug Fir #2
	Struct-1 Plywood
	Connection hardware as indicated
Concrete:	4000 psi Normal Weight UON
	Grade 60 Reinforcing – 175 lbs/cy

6.0 ARCHITECTURAL EVALUATION

This architectural evaluation begins with a general discussion of elements impacted by the scope of recommended seismic retrofit work. It then considered the impact of four possible scenarios the University may elect to pursue with the Faculty Alumni House:

- Scenario 1 No Historic Designation; No Change of Use: The building will not be
 registered as a historic building at the state or national level, and will maintain its existing
 mixed-use business (B) and assembly (A-3) occupancy following completion of structural
 retrofit work. This scenario will form the basis of the seismic evaluation scope of work
 and associated cost estimate.
- Scenario 2 Historic Designation; No Change of Use: The building will be registered as a historic building while maintaining its existing mixed-use business (B) and assembly (A-3) occupancy following completion of structural retrofit work.
- Scenario 3 No Historic Designation; Change of Use: The building will not be registered as a historic building at the state or national level, and will be renovated to accommodate a change of use. Consideration is given to possible alternative uses and the impact they will have on the building.
- Scenario 4 Historic Designation; Change of Use The building will be registered as a historic building at the state or national level, and will be renovated to accommodate a change of use. Consideration is given to possible alternative uses and the impact they will have on the building.

6.1 General Architectural Considerations for Seismic Retrofit Scope

The following issues apply universally, regardless of the historic designation/use scenario that is undertaken.

Potential for Lead and Asbestos-containing Materials

Based on the building's 1915 vintage, it is likely that the building contains hazardous materials such as lead-based paint or asbestos that require careful handling and abatement. Further testing of finish materials, including paint, ceiling texture, gypsum wall board, tape, and mud, shall be performed by the University to identify areas of concern. Abatement procedures shall be defined and carried out by an appropriately licensed party as part of the project scope of work.

Shear Walls

The original interior wall finish is comprised of plaster over wood lath totaling approximately 5/8" in thickness, installed directly over wood studs. Where new plywood shear walls are proposed, we recommend removing all plaster and wood lath along the length of the affected wall plane, and installing continuous plywood sheathing from corner to corner, covered with a continuous plane of 5/8" gypsum wall board. Gypsum wall board shall wrap into the opening at all doors,

and windows within new shear walls. Wall board shall be skim coated and artistically textured to closely match any existing plaster walls they abut or are proximate to.

At the time of our site investigations, it was unclear if exterior walls were insulated. We recommend an allowance be carried for new R-19 unfaced batt insulation at all exterior wall cavities that are opened for seismic retrofit work. Similarly, new R-30 batt insulation shall be installed at the

Roof Diaphragm

To facilitate the installation of a new plywood roof diaphragm as described in the structural evaluation above, the existing Mission style clay tile roof must be carefully removed and retained for reinstallation. According to the 1976 record specification for the re-roofing of the building, the pan tiles are fastened to the roof with a 12d galvanized nail, and cover tiles are fastened to a 12d nail with a 14ga copper wire. Thus, each tile is assumed to be appropriately pre-drilled and prepared for reinstallation using a twisted wire installation system to provide improved seismic performance. Tiles shall be installed over a new adhered underlayment complying with ASTM D1970, such as Grace Ultra, installed over the new plywood sheathing. New 16 ounce copper flashing shall be installed throughout.

Floor Diaphragm

All flooring finishes—primarily carpet—shall be removed at the second floor to allow new plywood to be installed over existing 1x subfloor between existing partitions. New floor finish material shall be applied over the plywood.

The added floor thickness created by the installation of plywood will likely require further undercut of existing doors to allow them to open freely, and tapering of plywood where it abuts the existing top stairway tread to eliminate a potential tripping hazard.

6.2 Scenario 1 – No Historic Designation; No Change of Use

Under this baseline scenario, the architectural elements of the project will be governed by the applicable provisions of the 2016 California Existing Building Code, the 2016 California Building Code, and the 2016 California Fire Code.

Existing Occupancy Classification

The existing occupancy classification of the Faculty Alumni House is mixed use storage (S-2) at the basement, assembly (A-3) occupancy at the first floor common areas, and business (B) at the remainder of the first floor and all second floor spaces.

Egress occupant loads at each floor are as follows:

Name of Space	Area (SF)	Load Factor	Occupants
---------------	-----------	-------------	-----------

Basement Storage (S-2)	761	300 gross	3
First Floor Assembly (A-3)	1,263	5 net*	253
First Floor Business (B)	1,922	100 gross	20
Second Floor Business (B)	3,267	100 gross	33
		TOTAL	309

*A load factor of 5 results in the highest potential occupant load in a standing space only scenario, such as a cocktail reception.

By maintaining the existing use and occupancy classifications, and limiting alterations to the scope of seismic retrofit work, no upgrade requirements are triggered to other portions of the building that are not in conformance with the current building code requirements with the exception of required accessibility upgrades as described below. No Fire Sprinkler or Fire Alarm upgrades are required by the CBC or CFC based on use or occupancy type.

Accessibility Upgrades

The scope of the seismic retrofit qualifies as an alteration with an adjusted construction cost exceeding the 2017 valuation threshold of \$156,162. As such, the project will require additional scope beyond the seismic retrofit to bring the building into compliance with the accessibility provisions of California Building Code Chapter 11B in the following order of priority:

- 1) An accessible entrance: An accessible ramp currently leads from the public way to the entry patio from which the front door is accessed. The following upgrades to the front door are required to bring it into compliance with accessibility requirements:
 - a. Level Landing: The exterior brick landing at the front door slopes away at greater than 1:48 and does not meet the requirement for a level landing. Brick paving shall be removed and regraded to provide a minimum 60-inch deep level landing at the front door, ramping down to meet the existing grade at a maximum slope of 1:12. No handrails are required at the ramping portion because the rise is less than 6inches (2016 CBC 11B-405.8).
 - b. Operating Force: The existing front door requires greater than 5 lbs operating force. Provide a powered door operator with push plate activation devices at interior and exterior approach in accordance with 2016 CBC 11B-404.2.9.
 - c. Maneuvering Clearance & Door Hardware: Strike-side maneuvering clearance and accessible hardware is not present on the existing door. Installation of a powered door operator per item b. above will serve as an alternate means of compliance.
- 2) Accessible Route to the Altered Area: The second level of the Alumni House is included in the altered area, and based on its Business use and

occupancy, an accessible route to the second floor is required via an elevator or lift. A hardship request is unlikely to be entertained based on the anticipated construction cost, expectation that at least 20% of the anticipated construction cost be spent on accessibility compliance, and the high level of priority given to providing an accessible route.

3) At least one accessible restroom: The single-occupant restroom at the first floor, currently designated as an accessible restroom, may be sufficient to serve the requirements of the facility with a few alterations to remove existing barriers. The most challenging of these alterations is to modify the window and the wall adjacent the toilet to eliminate surface hazards posed by the glass being within 12" of the grab bar, and the protruding trim. Additionally, toilet accessories such as paper towel dispensers and toilet paper dispensers shall be relocated to within accessible reach ranges.

We anticipate that the above listed alterations will meet the code intent for reasonable compliance efforts, however, we recommend the following alterations be considered as the budget allows to improve the level of accessibility:

- 4) Renovation of one additional single-occupancy restroom at the second floor to provide equitable distribution of accessible restroom facilities.
- 5) Replacement of all interior door hardware with levers
- 6) Alteration of the primary stair railing to comply with hand and guard rail requirements.

6.3 Scenario 2 – Historic Designation; No Change of Use

In this scenario, the architectural elements of the project will be governed by the applicable provisions of the 2016 California Historical Building Code, the 2016 Existing Building Code, the 2016 California Building Code, and the 2016 California Fire Code.

Historic Designation Impact

The benefits of historic designation are limited under this scenario. There are no perceived benefits in terms of fire sprinkler, fire alarm, or accessibility requirements. Certain non-compliant elements of the existing building, such as stair rails may be grandfathered in. Other benefits of historic designation such as tax incentives do not apply to The Regents of the University of California.

6.4 Scenario 3 – No Historic Designation; Change of Use

In this scenario, the architectural elements of the project will be primarily governed by the applicable provisions of the 2016 California Existing Building Code, the 2016 California Building Code, and the 2016 California Fire Code.

Alternate Use 1: Transient Lodging (R-1)

The original use and occupancy of the Alumni House was as a dormitory with three sleeping porches on the second level, thirteen study rooms, and two shared wash rooms. The first level included a living room, dining room, kitchen, guest room, card room, and reception hall. Renovating the Alumni House to provide transient lodging to visiting scholars and guests would represent a return to the historic use of the house.

Renovation Scope

Renovating the Alumni House to provide transient housing will require significant investment in new facilities at both the first and second levels. Renovations would be required to meet the current requirements for R-1 occupancies, which include:

- Installation of a sprinkler system in accordance with NFPA 13 and the California Fire Code
- Installation of a compliant fire alarm system
- Provision of restroom facilities at the second floor to serve lodging rooms. To remain attractive relative to other alternative lodging options, we assume rooms will be reconfigured to reflect a hotel-style layout with a single-occupancy restroom serving each lodging room.
- Provision of an accessible/mobility equipped lodging room. If located at the first level of the building, and served by an accessible restroom, the second floor need not be made accessible (2016 CBC 11B-203.8).

Additional consideration should be given to providing individually controlled fan coil units at each lodging room throughout the second level for thermal comfort.

Alternate Use 2: Child Care Center (I-4)

Another possible use of the Alumni House is as a Child Care Center serving the Parnassus Campus and the surrounding community. The first floor common spaces could be utilized for group play

Renovation Scope

Similar to the R-1 renovation scope, a change in use to I-4 would trigger the following facility upgrades:

- Installation of a sprinkler system in accordance with NFPA 13 and the California Fire Code
- Installation of a fire alarm system

Additional upgrades may be necessary depending on the desired use of the second floor level. Were the second floor to be used as office space serving the administrative functions of this child care center as well as others elsewhere on

campus, the second floor would need to be made accessible either by elevator or lift.

6.5 Scenario 4 – Historic Designation; Change of Use

In this scenario, the architectural elements of the project will be governed by the applicable provisions of the 2016 California Historical Building Code, the 2016 Existing Building Code, the 2016 California Building Code, and the 2016 California Fire Code.

Historic Designation Impact

Among the two alternative uses discussed above, the benefit of historical designation is most beneficial to a transient lodging scenario which fall under Section 8-303 of the 2016 California Historical Code for Residential Occupancies. This section provides exemptions for room sizes, window sizes, and fire escape requirements.

7.0 COST ESTIMATE

UCSF - Alumni House

San Francisco, CA

Rough Order of Magnitude (Rev 1) May 23, 2017 Cumming Project No. 17-00372.00

Prepared for Degenkolb

TABLE OF CONTENTS

	Page
1. Cost Summaries	
Summary	3
Summary Matrix	4
2. Construction Cost Back Up	
Seismic Solution & Scenario-1	5
Scenario 3.1 - Additional Scope to Scenario 1	13
Demolition	18
3. Appendix	
Qualifications	21

SUMMARY

Element	Area	Cost / SF	Total
Seismic Solution & Scenario-1	7,133	\$172.16	\$1,228,020
Priority / Phase 1 - Basement & Associated Work	7,133	\$12.40	\$88,483
Priority / Phase 2 - Roof & Associated Work	7,133	\$36.39	\$259,575
Priority / Phase 3 - Walls & Associated Work	7,133	\$66.07	\$471,290
Priority / Phase 4 - Floors & Associated Work	7,133	\$17.05	\$121,646
ADA Compliance - Scope	7,133	\$40.24	\$287,025
Scenario 2			
Total estimated construction cost assumed the same as Scenario 1 - no information	ition for alternate measu	ire.	
Scenario 3.1			
Scenario 3.1 - Additional Scope to Scenario 1	2,670	\$483.11	\$1,289,901
Scenario 1 - Associated Scope	7,133	\$172.16	\$1,228,020
Credit for Scenario 1 - Unassociated Scope			-\$140,000
Seismic Solution & Scenario 3.1 - Full Scope	7,133	\$333.37	\$2,377,920
Scenario 3.2			
Renovation for Child Care Facility	7,133	\$300.00	\$2,139,900
Scenario 1 - Associated Scope	7,133	\$172.16	\$1,228,020
Credit for Scenario 1 - Unassociated Scope			-\$140,000
Fire Sprinklers to Entire Building	7,133	\$11.00	\$78,463
Fire Alarm to Entire Building - Included Below			Included
- Seismic Solution & Scenario 3.2 - Full Scope	7,133	\$463.53	\$3,306,383

Scenario 4

Total estimated construction cost assumed the same as Scenario 1 - no information for alternate measure.

Demolition	9,603	\$30.85	\$296,230

SUMMARY MATRIX

				Scenario 3.1 - Additional Scor	ne to Scenario		
		Seismic Solution & Sce	nario-1			Demolition	
		7 133 SF		2 670 SF		9 603 SF	
Element		Total	Cost/SF	Total	Cost/SF	Total	Cost/SF
01 General Requirements							
02 Existing Conditions		\$73,109	\$10.25	\$36,700	\$13.75	\$209,220	\$21.79
03 Concrete		\$23,852	\$3.34				
04 Masonry		\$9,250	\$1.30				
05 Metals		\$161,899	\$22.70				
06 Wood, Plastics, And Composites		\$124,393	\$17.44	\$5,340	\$2.00		
07 Thermal And Moisture Protection		\$120,787	\$16.93				
08 Openings		\$61,750	\$8.66	\$58,800	\$22.02		
09 Finishes		\$139,283	\$19.53	\$192,240	\$72.00		
10 Specialties		\$2,381	\$0.33	\$125,000	\$46.82		
11 Equipment							
12 Furnishings				\$40,050	\$15.00		
14 Conveying Systems		\$80,000	\$11.22				
21 Fire Suppression				\$57,064	\$21.37		
22 Plumbing		\$9,375	\$1.31	\$112,180	\$42.01		
23 HVAC				\$120,150	\$45.00		
26 Electrical		\$35,665	\$5.00	\$133,500	\$50.00		
31 Earthwork		\$5,615	\$0.79				
32 Exterior Improvements		\$19,960	\$2.80				
33 Utilities				\$30,000	\$11.24		
Subtotal Cost		\$867,319	\$121.59	\$911,024	\$341.21	\$209,220	\$21.79
	10.001	A 40 4 0 - 0	A () - A	A / 00 000	• (• • • (AAAAAAAAAAAAA	AA A A
General Conditions	12.0%	\$104,078	\$14.59	\$109,323	\$40.94	\$25,106	\$2.61
Bonds & Insurance	2.0%	\$17,346	\$2.43	\$18,220	\$6.82	\$4,184	\$0.44
Contractor's Fee	8.0%	\$79,099	\$11.09	\$83,085	\$31.12	\$19,081	\$1.99
Design Contingency	15.0%	\$160,176	\$22.46	\$168,248	\$63.01	\$38,639	\$4.02
Escalation: Pending Schedule							
			• ·				
Total Estimated Construction Cost		\$1,228,020	\$172.16	\$1,289,901	\$483.11	\$296,230	\$30.85

Seismic Solution & Scenario-1

SUMMARY - SEISMIC SOLUTION & SCENARIO-1

Element	Tota	I	Cost / SF
01 General Requirements			
02 Existing Conditions		\$73,109	\$10.25
03 Concrete		\$23,852	\$3.34
04 Masonry		\$9,250	\$1.30
05 Metals		\$161,899	\$22.70
06 Wood, Plastics, And Composites		\$124,393	\$17.44
07 Thermal And Moisture Protection		\$120,787	\$16.93
08 Openings		\$61,750	\$8.66
09 Finishes		\$139,283	\$19.53
10 Specialties		\$2,381	\$0.33
11 Equipment			
12 Furnishings			
13 Special Construction			
14 Conveying Systems		\$80,000	\$11.22
21 Fire Suppression			
22 Plumbing		\$9,375	\$1.31
23 HVAC			
25 Integrated Automation			
26 Electrical		\$35,665	\$5.00
27 Communications			
28 Electrical Safety And Security			.
31 Earthwork		\$5,615	\$0.79
32 Exterior Improvements		\$19,960	\$2.80
33 Utilities			
34 Transportation			
40 Process Integration			
41 Material Processing And Handling Equipment			
44 Pollution Control Equipment			
48 Electrical Power Generation			
Subtotal		\$867,319	\$121.59
General Conditions	12.00%	\$104,078	\$14.59
Subtotal		\$971,397	\$136.18
Bonds & Insurance	2.00%	\$17,346	\$2.43
Subtotal		\$988,744	\$138.62
Contractor's Fee	8.00%	\$79,099	\$11.09
Subtotal		\$1,067,843	\$149.70
Design Contingency	15.00%	\$160,176	\$22.46
Subtotal		\$1,228,020	\$172.16
Escalation: Pending Schedule		÷.,==0,0=0	÷
TOTAL ESTIMATED CONSTRUCTION COST		\$1.228.020	\$172.16
		Ψ <u>1,</u> 220,020	

Total Area:

7,133 SF

DETAIL ELEMENTS - SEISMIC SOLUTION & SCENARIO-1 Element Quantity Unit Total 01 General Requirements **Total - General Requirements** 02 Existing Conditions **Facility Remediation** Lead & Asbestos Remediation HAZMAT abatement, allow 7.133 sf \$9.38 \$66.872 Demolition Paving Removal Remove & set aside existing clay pavers 1.996 sf \$3.13 \$6.238 \$73,109 **Total - Existing Conditions** 03 Concrete Concrete Reinforcing 2.275 lbs \$3.13 Foundation reinforcing \$7,109 Cast-In-Place Concrete Excavation, by hand, including offhaul 13 cy \$562.50 \$7,313 174 sf \$7.50 \$1,305 Concrete Layout Structural Concrete Concrete, continuous footings, 4000 psi 13 cy \$625.00 \$8.125 **Total - Concrete** \$23,852 04 Masonry **Clay Masonry Units** Remove existing clay masonry units 148 sf \$62.50 \$9,250 **Total - Masonry** \$9,250 05 Metals Miscellaneous Shoring of Existing Structure 1 ls \$6,250.00 \$6,250 Interior Partitions Metal studs, 6", 18 Ga., at 16" o.c. 146 sf \$18.75 \$2,738 Metal Railings 62 lf Remove existing uncompliant guardrails & handrails \$12.50 \$775 \$312.50 \$6.875 Guardrails 22 If

Metal Premiums Hold down anchor bolts to underside concrete footing & Simpsons HD9 at walls

Handrails

\$5,750

\$143.75

40 lf

DETAIL ELEMENTS - SEISMIC SOLUT	ION & SCENARIO-	1	
Element	Quantity Unit		Total
Foundation work - excavation, hold downs, etc.	47 loc	\$1 250 00	\$58 750
Tie-down between floors	70 loc	\$500.00	\$35,000
Tie-down between at roof	21 loc	\$500.00	\$10,500
Miscellaneous Metals		,	<i></i>
16 GA metal angle, nailed	898 lf	\$8.75	\$7,858
1/4" Bent plate connection to sill w/ (6) No 14 4" wood screws	89 ea	\$56.25	\$5,006
5/8" Dia epoxy anchors, complete	89 ea	\$81.25	\$7,231
Miscellaneous clip angles, sill bolts, etc., allow	7,133 gsf	\$1.25	\$8,916
Anchorage / Bracing			
Anchorage / bracing of existing boiler	1 ea	\$625.00	\$625
Anchorage / bracing of existing hot water heater	1 ea	\$625.00	\$625
Anchorage / bracing of existing filing cabinets	8 ea	\$625.00	\$5,000
Tatal Matala			¢4C4 000
Total - Metals			\$101,899
06 Wood, Plastics, And Composites			
Deursk Consents			
Rough Carpentry			
Wood stude 2" x 6" at 16" o.c. partitions	603 cf	¢11 25	\$7 706
Sill pailing $w/1/l'$ wood scraws at $l'' \circ c$	251 lf	φ11.25 \$8.75	\$2,190 \$2,106
Sill nailing w/ A35 clins at 16" o c & wood screws at 4" o c	263 lf	\$22.50	\$5 918
Roof Framing	200 11	ΨΖΖ.00	ψ0,010
Reentrant corner collectors allow	1 ls	\$3 750 00	\$3 750
Roof blocking w/ A35 clips at 16" o.c	3.053 sf	\$2.50	\$7.633
Plywood Sheathing	-,	+	Ţ.,
Shear walls, 1/2", cripple walls	113 sf	\$15.00	\$1,695
Shear walls, 1/2", interior of exterior walls	2,645 sf	\$6.25	\$16,531
Interior partitions, 1/2"	3,414 sf	\$6.25	\$21,338
Roof sheathing, 1/2"	3,053 sf	\$6.25	\$19,081
Gable end roof sheathing, 1/2"	153 sf	\$6.25	\$956
Plywood floor sheathing, 1/2"	2,635 sf	\$7.50	\$19,763
Tapering plywood sheathing at stair edge	15 lf	\$18.75	\$281
Roof underlayment	3,053 sf	\$3.75	\$11,449
Miscellaneous Rough Carpentry:		40 0-	** ***
Miscellaneous blocking/strapping and backing	12,013 st	\$0.25	\$3,003
Miscellaneous rough hardware	12,013 st	\$0.25	\$3,003
Total - Wood, Plastics, And Composites			\$124,393
07 Thermal And Moisture Protection			
Exterior Wall Insulation			
R-19 batt insulation, exterior walls and returns, semi-rigid incl. foil backing	113 sf	\$2.50	\$283
R-19 batt insulation, exterior walls and returns, semi-rigid incl. foil backing	2,645 sf	\$2.50	\$6,613
Interior Wall Insulation			
Fiberglass batt insulation, unbacked	1,785 sf	\$2.50	\$4,463

Mineral wool insulation, unbacked

\$502

\$3.44

146 sf

DETAIL ELEMENTS - SEISMIC SOLUTION & SCENARIO-1

Element	Quantity	Unit		Total
Roof Insulation				
R-30 batt roof insulation to U/S of structure	3,053	sf	\$3.13	\$9,541
Tile Roofing				
Carefully remove existing Spanish clay tile roofing	3,053	sf	\$6.25	\$19,081
Carefully reinstall existing Spanish clay tile rooting, w/ wire ties, fastened	3,053	ST	\$12.50	\$38,163
Conner flashing 16 oz	277	ef	\$68.75	\$19.064
Roof Accessories	211	51	φ00.70	ψ10,004
Aluminum gutters	241	lf	\$37.50	\$9,038
Aluminum downspouts	130	lf	\$37.50	\$4,875
Miscellaneous anchors and supports	3,053	sf	\$1.25	\$3,816
Miscellaneous				
Caulking allowance	7,133	gfa	\$0.75	\$5,350
Total - Thermal And Moisture Protection				\$120,787
08 Openings				
Exterior Doors				
Premiums				
Automatic door opener w/ push plate activation at int & ext.	1	ea S	\$10,000.00	\$10,000
Interior Doors				
Adjust existing door floor clearance	33	ea	\$437.50	\$14,438
Hardware				
Replace existing hardware with new ADA compliant opening levers	45	ea	\$562.50	\$25,313
Premiums				
Electronic hold open, per leaf	1	ea	\$1,000.00	\$1,000
Exterior Glazing			AO 405 00	AO 500
Strapping / framing of exisiting windows at 2nd level east façade	4	ea	\$2,125.00	\$8,500 ¢0,500
Modifications to existing window at 1st level ADA bathroom	1	IS	\$2,500.00	\$2,500
Total - Openings				\$61,750
09 Finishes				
Exterior Walls And Parapets				
Gypsum Board to Interior of Exterior				
Remove existing interior of exterior gypsum board & wood lath	2,645	sf	\$2.50	\$6,613
Interior of exterior, 5/8" thick gypsum board X, artistically textured finish	2,645	sf	\$8.13	\$21,491
Interior of exterior, 5/8" thick gypsum board X, finished	113	sf	\$6.25	\$706
Interior of exterior, 5/8" thick gypsum board X, finished, returns, jambs	142	st	\$12.50	\$1,771
Gvosum Board				
Remove existing gynsum board & wood lath	2 125	sf	\$3.75	\$8 10/
Gynsum board 5/8" thick artistically textured finish type X	2,100	sf	\$8.13	\$17 753
Gypsum board, 5/8" thick, finished, type X	1,674	sf	\$6.25	\$10,463

Tiling

DETAIL ELEMENTS - SEISMIC SOLUTION & SCENARIO-1

Element	Quantity Unit		Total
Fleere			
FI00IS Demove existing coromic floor tiles	185 cf	¢2 75	¢604
Coromia tila, floor	100 Si 185 cf	φ <u></u> 3.75 ¢28.75	ቀር 210 የድ 210
	100 51	φ20.75	<i>ф</i> 0,319
Dase Demove existing tile been	110 If	¢0 10	¢250
Coromia tila, basa	112 II 112 If	φο. ι ο Φο 1 ο μ	¢3 200
	112 11	φ31.25	\$3,500
VValls Coromia tila walla	70. of	¢21.05	ሮ ጋ 100
	70 SI	φ 3 1.25	φZ, 100
Floors	0 450 of	ድር በ	<u> </u>
Remove existing noor & base finishes	2,450 St	\$2.50 ¢4.05	\$0,120 \$2,004
Allow for prep	2,035 ST	\$1.25	\$3,294
	2,450 St	\$7.50	\$18,375
Base		A7 50	A7 07 5
Rubber base	1,050 lf	\$7.50	\$7,875
Painting and Coating			
Walls		40 -0	* (* * * *
Paint walls	4,830 st	\$2.50	\$12,075
Miscellaneous Finishes			* / * * *
Alterations to new ADA 2nd level bathroom	1 Is	\$12,500.00	\$12,500
Total - Finishes			\$139,283
10 Specialties			
Interior Specialties			
Tailat / Destroom Specialties			
Demove, releaste and reinstall paper towel dispanser combe unit	1 00	¢156.05	¢156
Remove, relocate and reinstall paper tower dispenser combo unit	1 ea	\$150.25 \$156.25	φ150 ¢156
Remove, relocate and reinstall sear dispenser	1 ea	\$100.20 \$156.25	φ100 ¢156
Remove, relocate and reinstall solar dispensel	1 ea	\$100.20 \$156.25	\$100 ¢156
Croh hara		φ100.20 ¢004.05	\$100 ¢044
Grap bars	s ea	Φ201.20 Φ275.00	ቅ044 ድጋግር
Paper tower dispenser combo unit	l ea	\$375.00 \$350.00	\$3/5 \$250
	l ea	\$∠50.00 ¢450.05	\$25U
Soap dispenser	1 ea	\$156.25	\$156
l ollet paper dispenser	1 ea	\$131.25	\$131
Total - Specialties			\$2,381
14 Conveying Systems			
Wheelchair Lifts			
Vertical lift, Garaventa Genesis, allow	1 ls	\$80,000.00	\$80,000
Total Convoving Systems			\$20.000
			,000,000

DETAIL ELEMENTS - SEISMIC SC	DLUTION & SCENARIO-1	
Element	Quantity Unit	Total
21 Fire Suppression		No Work Anticipated
Total - Fire Suppression		
22 Plumbing		
Allowance for Work at Existing Restroom	1 ls	\$9,375.00 \$9,375
Total - Plumbing		\$9,375
23 HVAC		No Work Anticipated
Total - HVAC		
25 Integrated Automation		No Work Anticipateo
Total - Integrated Automation		
26 Electrical		
Allowance for Incidental Scope Associated with Upgrades	7,133 gsf	\$5.00 \$35,665
Total - Electrical		\$35,665
27 Communications		No Work Anticipateo
Total - Communications		
28 Electrical Safety And Security		No Work Anticipateo
Total - Electrical Safety And Security		

Total - Electrical Safety And Securit

31 Earthwork

Grading, Cut and Fill

DETAIL ELEMENTS - SEISMIC SOLUTION & SCENARIO-1					
Element	Quantity Unit	Total			
Fine grading Haul excess	1,996 sf 1 Is	\$2.50 \$4,990 \$625.00 \$625			
Total - Earthwork		\$5,615			
32 Exterior Improvements					
Paving Relay existing clay pavers, incl sand layer	1,996 sf	\$10.00 \$19,960			
Total - Exterior Improvements		\$19.960			

Scenario 3.1 - Additional Scope to Scenario 1

SUMMARY - SCENARIO 3.1 - ADDITIONAL SCOPE TO SCENARIO 1

Ele	ment	Tota	I	Cost / SF
01 02 03 04	General Requirements Existing Conditions Concrete Masonry		\$36,700	\$13.75
05 06 07	Metals Wood, Plastics, And Composites Thermal And Mainture Protection		\$5,340	\$2.00
07 08 09 10	Openings Finishes Specialties		\$58,800 \$192,240 \$125,000	\$22.02 \$72.00 \$46.82
11 12 13	Equipment Furnishings Special Construction		\$40,050	\$15.00
21 22 23	Fire Suppression Plumbing HVAC		\$57,064 \$112,180 \$120,150	\$21.37 \$42.01 \$45.00
25 26 27 28 31	Integrated Automation Electrical Communications Electrical Safety And Security Earthwork		\$133,500	\$50.00
32 33 34 40 41 44 48	Exterior Improvements Utilities Transportation Process Integration Material Processing And Handling Equipment Pollution Control Equipment Electrical Power Generation		\$30,000	\$11.24
	Subtotal General Conditions	12.00%	\$911,024 \$109,323	\$341.21 \$40.94
	Subtotal Bonds & Insurance	2.00%	\$1,020,347 \$18,220	\$382.15 \$6.82
	Subtotal Contractor's Fee	8.00%	\$1,038,567 \$83,085	\$388.98 \$31.12
	Subtotal Design Contingency	15.00%	\$1,121,653 \$168,248	\$420.09 \$63.01
	Subtotal Escalation: Pending Schedule		\$1,289,901	\$483.11
Т	OTAL ESTIMATED CONSTRUCTION COST		\$1,289,901	\$483.11

Total Area:

2,670 SF

DETAIL ELEMENTS - SCENARIO 3.1 - ADDITIOI	NAL SCOPI	E TO S	CENARIO 1	
Element	Quantity	Unit	Unit Cost	Total
02 Existing Conditions				
Demolition Structure Demolition				
Demoliton and removal of internal partitions, floor and ceiling finishes Demolition and removal of existing kitchen, allow	2,67	70 sf 1 Is	\$10.00 \$10,000.00	\$26,700 \$10,000
Total - Existing Conditions				\$36,700
03 Concrete			No Worl	k Anticipated
Total - Concrete				
04 Masonry			No Worl	k Anticipated
Total - Masonry				
05 Metals			No Worl	k Anticipated
Total - Metals				
06 Wood, Plastics, And Composites				
Miscellaneous alterations / infill of existing openings / new openings	2,67	70 gsf	\$2.00	\$5,340
Total - Wood, Plastics, And Composites				\$5,340
07 Thermal And Moisture Protection			No Worl	k Anticipated
Total - Thermal And Moisture Protection				
08 Openings				
Interior Doors SC door in HM frame, including hardware & finish, single SC door in HM frame, including hardware & finish, single, restroom		14 ea 14 ea	\$2,400.00 \$1,800.00	\$33,600 \$25,200

DETAIL ELEMENTS - SCENARIO 3.1	- ADDITIONAL SCOPE TO	SCENARIO 1	
Element	Quantity Uni	t Unit Cost	Total
Total - Openings			\$58,800
09 Finishes			
Interior Partitions Tiling	2,670 gsf	\$35.00	\$93,450
Bathrooms	2,670 gsf	\$5.00	\$13,350
Walls Bathrooms	2,670 gsf	\$15.00	\$40,050
Flooring Floor finishes & bases Ceilings Painting and Coating	2,670 gsf 2,670 gsf 2,670 gsf	\$6.00 \$8.00 \$3.00	\$16,020 \$21,360 \$8,010
Total - Finishes			\$192,240
10 Specialties			
Interior Specialties Bedroom & bathroom specialties, allow Kitchens	14 ea	\$2,500.00	\$35,000
Remodel of existing kitchen, allow	1 Is	\$90,000.00	\$90,000
Total - Specialties			\$125,000
11 Equipment		No W	ork Anticipated
Total - Equipment			
12 Furnishings			
Allowance	2,670 gsf	\$15.00	\$40,050
Total - Furnishings			\$40,050
21 Fire Suppression			
Fire protection systems	7,133 sf	\$8.00	\$57,064
Total - Fire Suppression			\$57,064

DETAIL ELEMENTS - SCENARIO 3.1 - ADDIT	IONAL SCOPE TO S	CENARIO 1	
Element	Quantity Unit	Unit Cost	Total
22 Plumbing			
Plumbing Fixtures WC, allow 1 per bathroom indicated Lavatory, allow 1 per bathroom indicated Shower, allow 1 per bathroom indicated General Plumbing Natural Gas, Roof Drainage, Etc.	14 ea 14 ea 14 ea 2,670 sf	\$2,250.00 \$2,250.00 \$2,750.00 \$4.00	\$31,500 \$31,500 \$38,500 \$10,680 <i>Excluded</i>
Total - Plumbing			\$112,180
23 HVAC			
HVAC	2,670 sf	\$45.00	\$120,150
Total - HVAC			\$120,150
26 Electrical			
Electrical	2,670 sf	\$50.00	\$133,500
Total - Electrical			\$133,500
33 Utilities			
Allowance for Upgraded Utilities (not including electrical service)	1 ls	\$30,000.00	\$30,000
Total - Utilities			\$30.000

Demolition

	SUMMARY - D	DEMOLITION		
Ele	ment	Total		
01 02 03 04 05	General Requirements Existing Conditions Concrete Masonry Metals	\$209,22	0 \$21.79	
06 07 08 09 10 11	Wood, Plastics, And Composites Thermal And Moisture Protection Openings Finishes Specialties Equipment			
12 13 14 21 22 23	Special Construction Conveying Systems Fire Suppression Plumbing HVAC			
25 26 27 28 31	Integrated Automation Electrical Communications Electrical Safety And Security Earthwork			
32 33 34 40 41 44 48	Exterior Improvements Utilities Transportation Process Integration Material Processing And Handling Equipment Pollution Control Equipment Electrical Power Generation			
	Subtotal General Conditions	\$209,22 12.00% \$25,10	0 \$21.79 6 \$2.61	
	Subtotal Bonds & Insurance	\$234,32 2.00% \$4,18	6 \$24.40 4 \$0.44	
	Subtotal Contractor's Fee	\$238,51 8.00% \$19,08	1 \$24.84 1 \$1.99	
	Subtotal Design Contingency	\$257,59 15.00% \$38,63	2 \$26.82 9 \$4.02	
	Subtotal Escalation: Pending Schedule	\$296,23	0 \$30.85	
Т	OTAL ESTIMATED CONSTRUCTION COST	\$296,23	0 \$30.85	

Total Area:

9,603 SF

DETAIL ELEMENTS - DEMOLITION

Element	Quantity	Unit	Unit Cost	Total
02 Existing Conditions				
Demolition				
Site Demolition				
Demolition and removal of existing site improvements	2,47	'0 sf	\$7.50	\$18,525
Structure Demolition				
Demolition and removal of existing Alumni House building	7,13	3 sf	\$15.00	\$106,995
Fill / Planting to Footprint	5,58	0 sf	\$15.00	\$83,700
Total - Existing Conditions				\$209,220

APPENDIX 1 - QUALIFICATIONS				
Basis of Estimate	- Degenkolb - UCSF Alumni House - Seismic Evaluation (95% Draft) - Dated 04/24/2017 - Taylor Design - Drawing - Scenario 1-Wheelchair lift study - Taylor Design - Drawing - Scenario 3.1-Hotel-living study			
Cost Mark Ups	The following % mark ups have been included in each design option: - General Conditions (12.00% on direct costs) - Bonds & Insurance (2.00% on direct costs) - Contractor's Fee (8.00% compound) - Design Contingency (15.00% compound)			
Design Contingency	An allowance of 15.00% for undeveloped design details has been included in this estimate. As the design of each system is further developed, details which historically increase cost become apparent and must be incorporated into the estimate while decreasing the % burden.			
Construction Contingency	It is prudent for all program budgets to include an allowance for change orders which occur during the construction phase. These change orders normally increase the cost of the project. It is recommended that a 5-10% construction contingency is carried in this respect. This cost is not included within the estimate.			
Bid Conditions	This estimate has been based upon competitive bid situations (minimum of 3 bidders) for all items of subcontracted work.			
Basis For Quantities	Wherever possible, this estimate has been based upon the actual measurement of different items of work. For the remaining items, parametric measurements were used in conjunction with other projects of a similar nature.			
Basis for Unit Costs	Unit costs as contained herein are based on current bid prices in San Francisco, CA. Sub overheads and profit are included in each line item unit cost. Their overhead and profit covers each sub's cost for labor burden, materials, and equipment, sales taxes, field overhead, home office overhead, and profit. The general contractor's overhead is shown separately on the master summary.			
Sources for Pricing	This estimate was prepared by a team of qualified cost consultants experienced in estimating construction costs at all stages of design. These consultants have used pricing data from Cumming's database for office and educational facility construction, updated to reflect current conditions in San Francisco, CA.			
Key Exclusions	The following items have been excluded from our estimate: - Project Soft Costs - AV Equipment - Testing and inspection fees - Furnishing, equipment, and associated special construction unless noted in estimate - Owner-furnished items			
Key Qualifications	The following items are qualified within our estimate: - An adjustment has been made to allow for work within an occupied facility, this is based on reduced productivity and phasing of work within the various areas and minor off-hour work			
Items Affecting Cost Estimate	Items which may change the estimated construction cost include, but are not limited to:			

APPENDIX 1 - QUALIFICATIONS - Modifications to the scope of work included in this estimate. - Unforeseen sub-surface conditions. - Restrictive technical specifications or excessive contract conditions. - Any specified item of material or product that cannot be obtained from 3 sources. - Any other non-competitive bid situations. - Bids delayed beyond the projected schedule. Statement of Probable Cost Cumming has no control over the cost of labor and materials, the general contractor's or any subcontractor's method of determining prices, or competitive bidding and market conditions. This estimate is made on the basis of the experience, gualifications, and best judgement of a professional consultant familiar with the construction industry. Cumming, however, cannot and does not guarantee that proposals, bids, or actual construction costs will not vary from this or subsequent cost estimates. Cumming's staff of professional cost consultants has prepared this estimate in accordance with generally accepted principles and practices. This staff is available to discuss its contents with any interested party. Pricing reflects probable construction costs obtainable in the project locality on the target dates specified and is a determination of fair market value for the construction of this project. The estimate is not a prediction of low bid. Pricing assumes competitive bidding for every portion of the construction work for all sub and general contractors with a range of 3 - 4 bidders for all items of work. Experience and research indicates that a fewer number of bidders may result in higher bids. Conversely, an increased number of bidders may result in more competitive bid day responses. Recommendations Cumming recommends that the Owner and the Architect carefully review this entire document to ensure it reflects their design intent. Requests for modifications of any apparent errors or omissions to this document must be made to Cumming within ten days of receipt of this estimate. Otherwise, it will be assumed that its contents have been reviewed and accepted. If the project is over budget or there are unresolved budget issues, alternate systems / schemes should be evaluated before proceeding into further design phases. It is recommended that there are preparations of further cost estimates throughout design by Cumming to determine overall cost changes since the preparation of this preliminary estimate. These future estimates will have detailed breakdowns indicating materials by type, kind, and size, priced by

their respective units of measure.

APPENDIX A

Seismic Retrofit Figures

Degenkolb

FIRST LEVEL PLAN

SECOND LEVEL PLAN

ROOF LEVEL PLAN

Degenkolb

DETAILS

APPENDIX B

ASCE 41 Checklist

Dec	jenkolb
	DEGENKOLB ENGINEERS

Page 22	Page	22
---------	------	----

В	uildin	ng Na	me:	UCSF Alumni House	Date:	3/29/17	
Buil	ding	Addro	ess:	745 Parnassus Ave, San Francisco CA	_ Page: <u>1</u>	of	2
	Job	Num	ber:	B7901001.00 Job Name: UCSF Alumni House Seismic Evaluation	Ву:	Checked:	
				ASCE 41-13 Life Safety Structural Ch	ecklist f	or	
		Bui	ldi	ng Type W1: Wood Light Frames and V	W1A: Mi	ulti-Story,	
				Multi-Unit Residential Wood Frank	ame		
С	NC	N/A	U		C	Comments	
				LOW AND MODERATE SEISMICITY			
				Seismic-Force-Resisting System			
				REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. $5.5.1.1$)			
				SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.5.3.3, is less than the following values: (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1)			
				Structural panel sheathing:1,000 plfDiagonal sheathing:700 plfStraight sheathing:100 plfAll other conditions:100 plf			
				STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1)			
				GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard are not used as shear walls on buildings over one story in height with the exception of the uppermost level of a multi-story building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1)			
				NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1)			
				WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2)			
				HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story due to a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3)			
				CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4)			
				OPENINGS: Walls with openings greater than 80 percent of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5-to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2 Sec. 5.5.3.6.5)			
				Connections			
		\boxtimes		WOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3)			

		De	<u>eg</u>	enkolb Decenkolb Engine Eds			Page 23	
Buil	ding	j Na	me:	UCSF Alumni House	Date:		3/29/17	
Buildi	ng A	ddro	ess:	745 Parnassus Ave, San Francisco CA	Page:	2	of	2
J	ob N	lum	ber:	B7901001.00Job Name: UCSF Alumni House Seismic Evaluation	By: _		_ Checked: _	
C N		Bui N/A	ldi u	ng Type W1: Wood Light Frames and Multi-Unit Residential Wood F	d W1A: Frame	Mul	ti-Story,	
				LOW AND MODERATE SEISMICITY				
	\boxtimes			WOOD SILLS: All wood sills are bolted to the foundation. (Commentary: Sec. A.5.4.3.4. Tier 2: Sec. 5.7.3.3)				
				GIRDER/COLUMN CONNECTION: There is a positive connection utilizing plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1				
				HIGH SEISMICITY (Complete the following items in addition to the it	ems for Low a	nd Mod	lerate Seismicit	y)
				Connections				
				WOOD SILL BOLTS: Sill bolts are spaced at 6 feet or less with proper edge and end distance provided for wood and concrete. (Commentary: Sec. A.5.3.7 Tier 2: Sec. 5.7.3.3)				
				Diaphragms				
				DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)				
	\boxtimes			ROOF CHORD CONTINUITY: All chord elements are continuous, regardless changes in roof elevation. (Commentary: Sec. A.4.1.3 Tier 2: Sec. 5.6.1.1)	of			
				STRAIGHT SHEATHING: All straight sheathed diaphragms have aspect ratio less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.1)	s			
-				SPANS: All wood diaphragms with spans greater than 24 feet consist of wood	4			

structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2)

have aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)

wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)

 \boxtimes

UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 feet and shall

□ □ ☑ □ OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than

APPENDIX C

Structural Calculations

UCSF Alumni House Seismic Study California

Structural Calculations Package

April 24, 2017

Degenkolb Job Number: B7901001.00

www.degenkolb.com

TABLE OF CONTENTS

UCSF Alumni House Seismic Study Structural Calculations Package UCSF Alumni House

1.0	PROJECT NARRATIVE	1
2.0	SCOPE AND PERFORMANCE OBJECTIVE	3
3.0	GENERAL BUILDING INFORMATION	5
3.1	Plan Dimensions and Story Heights	7
3.2	Existing Building Structure	17
3.3	Building Weight Takeoff and Seismic Mass	21
3.4	BSE-1E Seismic Forces	24
3.5	BSE-2E Seismic Forces	28
4.0	TIER 1 SHEAR CHECK	32
5.0	RETROFIT DESIGN	34
5.1	Shear Wall Type and Location.	35
5.2	Diaphragm Type	49
5.3	Details	53
5.4	Hold Downs	69
6.0	PRODUCT DATA	75

UCSF Alumni House Seismic Study Structural Calculations Package UCSF Alumni House

SECTION 1.0 PROJECT NARRATIVE
Degenkolb				235 Montgomery Street, Suite 500 San Francisco, CA 94104-2908 Phone: 415.392.6952 Fax: 415.981.3157		
Subject:	Project Narrative	Job Number:	B7901001.00	Date:	04/20/2017	
Job:	UCSF Alumni Building Seismic Evaluation	By:	MXN	Section:	1.0	
		Checked By:	RMG			

Page 28

Degenkolb Engineers

USCF Alumni Building:

The Alumni House, located at 745 Parnassus Avenue in San Francisco California, is a two-story wood framed building with a partial basement. The building is approximately 3,000 square feet in plan at each floor and is in L-shaped in plan. The building is, 76 feet in the east-west direction and 73 feet in the north-south direction. There is a 600 square foot partial basement in the southwest corner of the building.

The exterior wall of the building is framed with 2x6 at 16" oc. The walls are finished with stucco on the exterior and with 5/8" wood lath and plaster on the interior. Interior walls are typically 2x4 construction with plaster or gypsum wall board. The roof is a gabled roof with Spanish clay tile. The roof is framed with 2x6's at 16" oc and 1x straight sheathing. There is a flat ceiling below framed with 2x4's at 16" oc and sheathed with gypsum wall board. The 2^{nd} and first floors are framed with 2x12's @ 16" oc and sheathed with 1x flooring applied directly over the framing. The flooring runs perpendicular to the framing and as such has been treated as straight sheathing. The building is supported on concrete foundations.

The Alumni house currently functions as meeting / event spaces on the first floor and contains offices on the second floor. The Alumni House is Risk Category III.

Project Purpose:

Previous evaluations of the Alumni House have concluded that the structure is seismically deficient. UCSF has engaged Degenkolb to perform a seismic study of the Alumni building structure. The seismic study will consist of structural and architectural evaluation of the retrofit necessary to bring the Alumni house into compliance with the UC Interim Seismic Safety Policy. In addition, the seismic study will provide a rough order of magnitude cost estimate for the recommended structural and architectural retrofits.

Code Reference:

- 2012 International Building Code (2012 IBC),
- 2010 California Building Code (2010 CBC),
- 2013 ASCE 41 Seismic Evaluation and Retrofit of Existing Buildings,

Existing Drawing Reference:

- Architectural Plans by Masten and Hurd Architects (UCSF File No 2797)
- 01/8/83 Food Service Equipment Drawings by Berlin Food Company (UCSF File No. 2850)
- 02/7/85 Electrical Plan by Alan Lucas + Associates (UCSF File NO 3122)
- 02/15/13 Floor Plans by ehdd

SECTION 2.0 SCOPE AND PERFORMANCE OBJECTIVE

Degenkolb Engineers 235 Montgomery Street, Suite 500 San Francisco, CA 94104-2908 Phone: 415.392.6952 Fax: 415.981.3157

Page 30

Subject:	Scope and Performance Objective	Job Number:	B7901001.00	Date:	04/20/2017
Job:	UCSF Alumni Building Seismic Evaluation	By:	MXN	Section:	2.0
		Checked By:	RMG		

Calculations Scope:

These calculations consist of the structural portion of the seismic study. The structural calculations provide a ASCE 41 Tier 2 seismic evaluation of the Alumni House and a conceptual retrofit design to bring the building into compliance.

Performance Objective:

Per the UC Interim Seismic Safety Policy (UC Seismic Policy) establishes a seismic rehabilitation Performance Level Rating III (or *Good* per the historic UC Ratings) for a Occupancy Category III building.

The UC Seismic Policy indicates that this rating is equivalent to the performance criteria indicated in Chapter 34 of the 2010 edition of the California Building Code (2010 CBC). For a State-Owned building such as the Alumni House, the 2010 CBC establishes the following performance criteria at two different seismic hazards:

- 1. At the BSE-R Seismic Hazard: Life Safety (LS) structural performance and hazards reduced (N-D) nonstructural performance.
- 2. At the BSE-C Seismic Hazard: Collapse Prevention (CP) structural performance with no consideration of nonstructural performance (N-E).

Per the 2010 CBC the BSE-R ground motion parameters are developed for a seismic hazard level of 20-percent probability of exceedance in 50 years. For the purposes of this evaluation, this is considered equivalent to the ASCE-41 Basic Safety Earthquake-1 (BSE-1E). The BSE-C ground motion parameters are developed for a seismic hazard level of 5-percent probability of exceedance in 50 years. For the purposes of this evaluation, this is considered equivalent to the ASCE-41 Basic Safety Earthquake-2 (BSE-2E).

Per the 2010 CBC the hazards reduced nonstructural performance criteria refers to a performance criteria that is no longer evaluated in the current edition of ASCE-41 (2013). For the purposes of this evaluation, the life safety (N-C) nonstructural performance criteria will be considered.

SECTION 3.0 GENERAL BUILDING INFORMATION

Subject:	Global Data	Job Number:	B7901001.00	Date:	04/20/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.0
		Checked By:	RMG	Page	

GLOBAL DATA

ASCE 41-13 SEISMIC EVALUATION & RETROFIT OF EXISTING BUILDINGS CHAPTER 6 - TIER 1 EVALUATION LINEAR STATIC PROCEDURE LIFE SAFETY PERFORMANCE LEVEL BSE-1E HAZARD LEVEL

SITE DATA:

Latitude:	37.76216 °N	Parnasus and 5th Ave	USGS Seismic Design Map Application:	
Longitude:	122.46161 °W	San Francisco CA	http://geohazards.usgs.gov/hazardtool/ap	<u>plication.php</u>
Site Class:	D	(Stiff Soil)	Site Class	[ASCE 41-13, §2.4.1.6.1]
S _S =	0.913 g	(USGS) (20% / 50 years)	USGS Mapped ($T = 0.2 \text{ sec}$)	[ASCE 41-13, §2.4.1.4]
$S_1 =$	0.356 g	(USGS) (20% / 50 years)	USGS Mapped ($T = 1.0 \text{ sec}$)	[ASCE 41-13, §2.4.1.4]
F _a =	1.135	(Site Class D)	Site Coefficient ($T = 0.2 \text{ sec}$)	[ASCE 41-13, Table 2-3]
$F_v =$	1.688	(Site Class D)	Site Coefficient ($T = 1.0 \text{ sec}$)	[ASCE 41-13, Table 2-4]
S _{XS} =	1.036 g	$= F_a S_S$	Site-Adjusted Design ($T = 0.2 \text{ sec}$)	[ASCE 41-13, Eq. 2-4]
S _{X1} =	0.601 g	$= F_v S_1$	Site-Adjusted Design ($T = 1.0 \text{ sec}$)	[ASCE 41-13, Eq. 2-5]

BUILDING DATA:

Building Ty	/pe:	W1	
Year Built:		1915	
Number of	Stories:	3	stories
Parapet Hei	ght:	0.00	ft
Roof Heigh	t:	25.0	ft
Total Area:		11,753	sf
	Height	Elevation	Length

(Wood Light Frames)	

Light	Frames)	

[ASCE 41-13, Table 3-1]

Total / fiea.		11,755	51				
Laval	Height	Elevation	$\text{Length}_{\text{N-S}}$	$\text{Length}_{\text{E-W}}$	Area	Diaphragm	Diaphragm
Level	[ft]	[ft]	[ft]	[ft]	[sf]	Stiffness	Description
Roof	11	25	73	76	3,053	Flexible	Diagonal Sheathing
2nd	10	14	73	69	2,900	Flexible	Diagonal Sheathing
1st	4	4	73	69	2,900	Flexible	Diagonal Sheathing
Bsmt	0	0	73	69	2,900	Rigid	Concrete Slab

Section 3.1 Plan Dimensions and Story Heights

Subject:	BUILDING INFORMATION	Job Number:	B7901001.00	Date:	04/12/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.1
		Checked By:	RMG	Page	

The current building plans from ehdd were scaled to determine the building dimensions at each level, shear wall locations, appropriate locations for shear wall segments, appropriate location for interior shear walls, and diaphragm spans.

The story heights are based off of field observations and measurements indicated in the Berlin Food Equipment Company drawings.

The relevant drawings and dimensions are shown on the following pages.

BASEMENT LEVEL PLAN

SECOND LEVEL PLAN

ROOF LEVEL PLAN

- FIRST FLOOR TO SECOND FLOOR HEIGHT SHOWN TO BE 10'-0 1/8" IN SECTION.
 - AVERAGE SLOPED ROOF HEIGHT CONSIDERED 11'-0" BASED OFF SITE VISIT AND PHOTOS

- CRAW SPACE AVERAGE HEIGHT CONSIDERED 4'-0" BASED OFF SITE VISIT

Section 3.2 Existing Building Structure

Subject:	STRUCTURAL OBSERVATION	Job Number:	B7901001.00	Date:	04/12/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.2
		Checked By:	RMG	Page	

No structural drawings were available for review. The Alumni House structure has been inferred based off of the time of construction (1915), structure type (wood frame), and site visit observations as cataloged below.

PHOTO - Observed Roof Structure

PHOTO - Roof 1" Horizontal Sheathing

PHOTO - 1st Floor Framing (2x12@16" O.C.) on SIII Plate with not Shear Connection to Foundation

SKETCH - Observed Roof Structure (web verticals not shown)

SKETCH - Observed/Deduced Wall and Floor Structure

Section 3.3 Building Weight Takeoff and Seismic Mass

	-				
Subject:	Weight Take Off	Job Number:	B7901001.00	Date:	04/20/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.3
		Checked By:	MXN	Радо	

WEIGHT TAKEOFF

ASCE 41-13 SEISMIC EVALUATION & RETROFIT OF EXISTING BUILDINGS CHAPTER 6 - TIER 1 EVALUATION LINEAR STATIC PROCEDURE LIFE SAFETY PERFORMANCE LEVEL BSE-1E HAZARD LEVEL

ROOF TYPE:	ROOF						
	Clay Tiles	(Spanish)		@	19.0 psf	19.0 psf	у
1 in	Wood Decking			(a)	2.5 psf per inch	3.0 psf	у
1.33 ft O.C.	Wood Sub-Purlins	2 x	6	@	1.8 plf	1.3 psf	у
1.33 ft O.C.	Wood Purlins	2 x	8	@	2.4 plf	1.8 psf	у
0.625 in	Gypsum Board Ceiling			@	4.4 psf per inch	2.8 psf	у
100% floor area	Interior Partitions	(Below)		@	5.0 psf	5.0 psf	у
	M.E.P.			@	2.0 psf	1.0 psf	у
	Miscellaneous			@	1.2 psf	1.5 psf	у
					ROOF WEIGHT =	35.4 psf	

FLOOR TYPE:	FLR-2						
1 in	Floor Tiles	(Linoleun	n Tile)	@	4.0 psf per inch	4.0 psf	у
1 in	Wood Sheathing			(a)	3.0 psf per inch	3.0 psf	у
1.33 ft O.C.	Wood Sub-Purlins	2 x	12	(a)	3.7 plf	2.8 psf	у
0.625 in	Gypsum Board Ceiling			a	4.4 psf per inch	2.8 psf	у
100% floor area	Interior Partitions	(Above &	Below)	@	10.0 psf	10.0 psf	у
	M.E.P.			@	5.0 psf	1.0 psf	у
	Miscellaneous			@	#REF! psf	1.5 psf	у
					FLR-2 WEIGHT =	= 25.1 psf	

FLOOR TYPE:	FLR-1						
1 in	Floor Tiles	(Linoleum Tile)		@	4.0 psf per inch	4.0 psf	у
1 in	Wood Decking			a	2.5 psf per inch	3.0 psf	у
1.33 ft O.C.	Wood Sub-Purlins	2 x	12	a	3.7 plf	2.8 psf	у
0.625 in	Gypsum Board Ceiling			a	4.4 psf per inch	2.8 psf	у
100% floor area	Interior Partitions	(Above)		@	5.0 psf	5.0 psf	у
	M.E.P.			@	5.0 psf	1.0 psf	у
	Miscellaneous			@	#REF! psf	1.5 psf	у
					FLR-1 WEIGHT =	20.1 psf	

WALL TYPE:	WALL-0					
0.75 in	Exterior Stucco		@	11.4 psf per inch.	8.6 psf	у
1 in	Wood Sheathing		@	3.0 psf per inch	3.0 psf	у
0.625 in	Gypsum Wallboard		@	4.4 psf per inch	2.8 psf	у
	Wall Insulation		@	1.0 psf	1.0 psf	у
16 in O.C.	Wood Studs	(2 x 6)	@	1.8 plf	1.3 psf	у
	Miscellaneous		@	1.6 psf	1.5 psf	у

Solid Wall Weight = 18.1 psf

Window & Door Weight =

% Solid Wall = 100%

8.0 psf

WALL-0 WEIGHT = 18.1 psf

Subject:	Seismic Mass	Job Number:	B7901001.00	Date:	04/20/17	
Job:	UCSF Alumni House	By:	RMG	Section:		3.3
		Checked By:		Page		

SEISMIC MASS

ASCE 41-13 SEISMIC EVALUATION & RETROFIT OF EXISTING BUILDINGS CHAPTER 6 - TIER 1 EVALUATION LINEAR STATIC PROCEDURE LIFE SAFETY PERFORMANCE LEVEL BSE-1E HAZARD LEVEL

ROOF/FLOOR WEIGHT SUMMARY:

Level	Weight
Туре	[psf]
ROOF	35.4
FLR-2	25.1
FLR-1	20.1

WALL WEIGHT SUMMARY:

Wall	Weight [psf]							
Туре	Net	Solid	Openings					
WALL-0	18.1	18.1	8					

SEISMIC MASS SUMMARY:

		FLOOR			WALL ABOVE			WALL BELOW				TOTAL
Level	Level	Weight	Area	Wall	Weight	Length	Height	Wall	Weight	Length	Height	WEIGHT
	Туре	[psf]	[sf]	Туре	[psf]	[ft]	[ft]	Туре	[psf]	[ft]	[ft]	[kips]
Roof	ROOF	35.4	3,053	WALL-0	18.1	299	0.00	WALL-0	18.1	299	5.50	137.9
2nd	FLR-2	25.1	2,900	WALL-0	18.1	284	5.50	WALL-0	18.1	284	5.00	126.7
1st	FLR-1	20.1	2,900	WALL-0	18.1	284	5.00	WALL-0	18.1	284	2.00	94.2
											Σ	358.7

N-S MASS DISTRIBUTION (FLEXIBLE DIAPHRAGM)

			FLOOR			WALL	ABOVE			WALL	BELOW		TOTAL
Level	Grid	Level	Weight	Area	Wall	Weight	Length	Height	Wall	Weight	Length	Height	WEIGHT
		Туре	[psf]	[sf]	Туре	[psf]	[ft]	[ft]	Туре	[psf]	[ft]	[ft]	[kips]
Roof	1	ROOF	35.4	715	WALL-0	18.1	74.4	0	WALL-0	18.1	74.4	5.5	32.7
	2		35.4	981	WALL-0	18.1	93.5	0	WALL-0	18.1	93.5	5.5	44.0
	3		35.4	874	WALL-0	18.1	45.6	0	WALL-0	18.1	45.6	5.5	35.5
	4		35.4	484	WALL-0	18.1	85.0	0	WALL-0	18.1	85.0	5.5	25.6
2nd	1	FLR-2	25.1	667	WALL-0	18.1	74.4	5.5	WALL-0	18.1	74.4	5	30.9
	2		25.1	929	WALL-0	18.1	93.5	5.5	WALL-0	18.1	93.5	5	41.1
	3		25.1	874	WALL-0	18.1	45.6	5.5	WALL-0	18.1	45.6	5	30.6
	4		25.1	430	WALL-0	18.1	85.0	5.5	WALL-0	18.1	85.0	5	27.0
1st	1	FLR-1	20.1	667	WALL-0	18.1	74.4	5	WALL-0	18.1	74.4	2	22.8
	2		20.1	929	WALL-0	18.1	93.5	5	WALL-0	18.1	93.5	2	30.5
	3		20.1	874	WALL-0	18.1	45.6	5	WALL-0	18.1	45.6	2	23.3
	4		20.1	430	WALL-0	18.1	85.0	5	WALL-0	18.1	85.0	2	19.4

E-W MASS DISTRIBUTION (FLEXIBLE DIAPHRAGM)

			FLOOR			WALL	ABOVE			WALL	BELOW		TOTAL
Level	Grid	Level	Weight	Area	Wall	Weight	Length	Height	Wall	Weight	Length	Height	WEIGHT
		Туре	[psf]	[sf]	Туре	[psf]	[ft]	[ft]	Туре	[psf]	[ft]	[ft]	[kips]
Roof	A	ROOF	35.4	537	WALL-0	18.1	89.8	0	WALL-0	18.1	89.8	5.5	28.0
	В		35.4	960	WALL-0	18.1	30.1	0	WALL-0	18.1	30.1	5.5	37.0
	С		35.4	1043	WALL-0	18.1	127.2	0	WALL-0	18.1	127.2	5.5	49.6
	D		35.4	514	WALL-0	18.1	67.2	0	WALL-0	18.1	67.2	5.5	24.9
2nd	A	FLR-2	25.1	487	WALL-0	18.1	82.0	5.5	WALL-0	18.1	82	5	27.8
	В		25.1	857	WALL-0	18.1	30.1	5.5	WALL-0	18.1	30.1	5	27.2
	С		25.1	1043	WALL-0	18.1	127.2	5.5	WALL-0	18.1	127.2	5	50.4
	D		25.1	514	WALL-0	18.1	67.2	5.5	WALL-0	18.1	67.2	5	25.7
1st	А	FLR-1	20.1	487	WALL-0	18.1	82.0	5	WALL-0	18.1	82	2	20.2
	В		20.1	857	WALL-0	18.1	30.1	5	WALL-0	18.1	30.1	2	21.0
	С		20.1	1043	WALL-0	18.1	127.2	5	WALL-0	18.1	127.2	2	37.1
	D		0.0	514	WALL-0	18.1	67.2	5	WALL-0	18.1	67.2	2	8.5

Section 3.4 BSE-1E Seismic Forces

Degenkolb

Subject:	Seismic Forces BSE-1E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.4
		Checked By:		Page	

SEISMIC FORCES

ASCE 41-13 SEISMIC EVALUATION & RETROFIT OF EXISTING BUILDINGS CHAPTER 6 - TIER 2 EVALUATION LINEAR STATIC PROCEDURE LIFE SAFETY PERFORMANCE LEVEL BSE-1E HAZARD LEVEL

BUILDING TYPE:W1SITE CLASS:D		(Wood Light Frames) (Stiff Soil)	(Wood Light Frames) (Stiff Soil)			
DESIGN SP	PECTRAI	ACCELERATION	S:			
S _{XS}	=	1.0360724 g	(BSE-1E)	Site-Adjusted Design ($T = 0.2 \text{ sec}$)	[ASCE 41-13, Eq. 2-4]	
\mathbf{S}_{X1}	=	0.600928 g	(BSE-1E)	Site-Adjusted Design ($T = 1.0 \text{ sec}$)	[ASCE 41-13, Eq. 2-5]	
BUILDING	PERIOD	:				
h _n	=	25 ft	(Base to Roof)	Building Height	[ASCE 41-13, §4.5.2.4]	
Ct	=	0.02	(Building Type W1)	Period Coefficient	[ASCE 41-13, §4.5.2.4]	
β	=	0.75	(Building Type W1)	Period Exponent	[ASCE 41-13, §4.5.2.4]	
Т	=	0.22 sec	$= C_t h_n^{\beta}$	Fundamental Period	[ASCE 41-13, Eq. 4-5]	

RESPONSE SPECTRUM:

PSEUDO LATERAL FORCE:

n	=	3	(n = 3)	Total Number of Stories	[ASCE 41-13, §4.5.2.1]
Cm	=	1.0	W1 / (n = 3)	Effective Mass Factor	[ASCE 41-13, Table 7-4]
DCRmax	=	2.0	Max DCR w/ C1C2Cm=1.0		
µstrength	=	1.3	DCRmax/1.5*Cm		[ASCE 41-13, EQ C7-3]
a	=	60.0		Site Class Factor	[ASCE 41-13, 7.4.1.3]
C1	=	1.11			[ASCE 41-13, EQ 7-22]
C2	=	1.00			[ASCE 41-13, EQ 7-23]
C1C2	=	1.11		Modificaiton Factors	[ASCE 41-13, Table 7-3]
S _a	=	1.04 g	= MIN { S_{X1} / T , S_{XS} }	Spectral Acceleration	[ASCE 41-13, Eq. 4-4]
V	=	1.154 W	= C1C2Cm S _a W	Pseudo Lateral Force	[ASCE 41-13, Eq. 4-1]

Subject:	Seismic Forces BSE-1E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.4
		Checked By:		Page	

BSE 1E - VERTICAL DISTRIBUTION OF SEISMIC FORCES:

k	=	1.00		$(T \le 0.5 s)$	sec)			Seismic Distribution Exponent [ASCE 41-13, §4.5.2.2]
Laval	h _x	W _x	w h ^k	C	F _x	Vj	Fpx	$F_x = C_{vx} V = [w_x h_x^k / \Sigma (w_x h_x^k [ASCE 41-13, Eq. 4-3a]]$
Level	[ft]	[kips]	w _x n _x	C _{vx}	[kips]	[kips]	[kips]	$V_j = \Sigma F_x$ [ASCE 41-13, Eq. 4-3b]
Roof	25.0	138	3,446	0.62	255	255	255	
2nd	14.0	127	1,773	0.32	131	386	185	
1st	4.0	94	377	0.07	28	414	109	
TOTAL	-	359	5,597	1.00	414	-		

Wall Forces

N-S FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		TOTAL			
Level	Grid	WEIGHT	Acel	F _x	Vj
		[kips]	%	[kips]	[kips]
Roof	1	33	1.850	60.6	60.6
	2	44		81.5	81.5
	3	35		65.6	65.6
	4	26		47.4	47.4
2nd	1	31	1.036	32.0	92.5
	2	41		42.6	124.0
	3	31		31.7	97.3
	4	27		27.9	75.3
1st	1	23	0.296	6.8	99.3
	2	31		9.0	133.1
	3	23		6.9	104.2
	4	19		5.7	81.1
TOTAL	-	363	-	418	-

E-W MASS DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		TOTAL			
Level	Grid	WEIGHT	Acel	F _x	Vj
		[kips]	%	[kips]	[kips]
Roof	А	28	1.850	51.7	51.7
	В	37		68.4	68.4
	С	50		91.8	91.8
	D	25		46.0	46.0
2nd	А	28	1.036	28.8	80.5
	В	27		28.2	96.6
	С	50		52.2	143.9
	D	26		26.6	72.6
1st	А	20	0.296	6.0	86.5
	В	21		6.2	102.8
	С	37		11.0	154.9
	D	9		2.5	75.1
TOTAL	-	357	-	419	-

Subject:	Seismic Forces BSE-1E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.4
		Checked By:		Page	

BSE-1E Diaphragm Forces

N-S FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		Sub Diaph		
Level	Sub Diaph	Area		Fp _x
		Sqft	%	[kips]
Roof	West	1,385	0.454	115.6
	East	1,668	0.546	139.4
2nd	West	1,385	0.454	83.9
	East	1,668	0.546	101.1
1st	West	1,385	0.454	49.3
	East	1,668	0.546	59.4

E-W FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		Sub Diaph		
Level	Sub Diaph	Area		Fp _x
		Sqft	%	[kips]
Roof	North	983	0.322	82.1
	South	2,070	0.678	172.9
2nd	North	983	0.322	59.6
	South	2,070	0.678	125.4
1st	North	983	0.322	35.0
	South	2,070	0.678	73.7

Section 3.5 BSE-2E Seismic Forces

Subject:	Seismic Forces - BSE 2E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.5
		Checked By:		Page	

SEISMIC FORCES

ASCE 41-13 SEISMIC EVALUATION & RETROFIT OF EXISTING BUILDINGS CHAPTER 6 - TIER 2 EVALUATION LINEAR STATIC PROCEDURE LIFE SAFETY PERFORMANCE LEVEL BSE-2E HAZARD LEVEL

BUILDING T SITE CLASS	ГҮРЕ: 5:	W1 D	(Wood Light Frames) (Stiff Soil)		[ASCE 41-13, Table 3-1] [ASCE 41-13, §2.4.1.6.1]
DESIGN SPH	ECTRAL A	ACCELERATIONS	S:		
S _{XS}	=	1.723 g	(BSE-2E)	Site-Adjusted Design ($T = 0.2 \text{ sec}$)	[ASCE 41-13, Eq. 2-4]
S _{X1}	=	1.147 g	(BSE-2E)	Site-Adjusted Design ($T = 1.0 \text{ sec}$)	[ASCE 41-13, Eq. 2-5]
BUILDING I	PERIOD:				
h _n	=	25 ft	(Base to Roof)	Building Height	[ASCE 41-13, §4.5.2.4]
Ct	=	0.02	(Building Type W1)	Period Coefficient	[ASCE 41-13, §4.5.2.4]
β	=	0.75	(Building Type W1)	Period Exponent	[ASCE 41-13, §4.5.2.4]
Т	=	0.22 sec	$= C_t h_n^{\beta}$	Fundamental Period	[ASCE 41-13, Eq. 4-5]

RESPONSE SPECTRUM:

PSEUDO LATERAL FORCE:

=	3	(n = 3)	Total Number of Stories	[ASCE 41-13, §4.5.2.1]
=	1.0	W1 / (n = 3)	Effective Mass Factor	[ASCE 41-13, Table 7-4]
=	3.2	Max DCR w/ C1C2Cm=1.0		
=	2.1	DCRmax/1.5*Cm		[ASCE 41-13, EQ C7-3]
=	60.0		Site Class Factor	[ASCE 41-13, 7.4.1.3]
=	1.38			[ASCE 41-13, EQ 7-22]
=	1.03			[ASCE 41-13, EQ 7-23]
=	1.42		Modification Factors	[ASCE 41-13, Table 7-3]
=	1.723 g	= MIN { S_{X1} / T , S_{XS} }	Spectral Acceleration	[ASCE 41-13, Eq. 4-4]
=	2.450 W	= C1C2Cm S _a W	Pseudo Lateral Force	[ASCE 41-13, Eq. 4-1]
		 3 1.0 3.2 2.1 60.0 1.38 1.03 1.42 1.723 g 2.450 W 	$\begin{array}{llllllllllllllllllllllllllllllllllll$	= 3 $(n=3)$ Total Number of Stories = 1.0 W1 / $(n=3)$ Effective Mass Factor = 3.2 Max DCR w/ C1C2Cm=1.0 = 2.1 DCRmax/1.5*Cm = 60.0 Site Class Factor = 1.38 - = 1.03 - = 1.42 Modification Factors = 1.723 g = MIN { $S_{X1} / T, S_{XS} $ Spectral Acceleration = 2.450 W = C1C2Cm S _a W Pseudo Lateral Force

Subject:	Seismic Forces - BSE 2E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	RMG Section:	
		Checked By:		Page	

BSE-2E VERTICAL DISTRIBUTION OF SEISMIC FORCES:

k	=	1.00		(T \leq 0.5 s	sec)			Seismic Distribution Exponent	[ASCE 41-13, §4.5.2.2]
Laval	h _x	W _x	1. k	C	F _x	Vj	Fpx	$F_{x} = C_{vx} V = [w_{x} h_{x}^{k} / \Sigma (w_{x} h_{x}^{k})]$	[ASCE 41-13, Eq. 4-3a]
Level	[ft]	[kips]	W _x n _x	C _{vx}	[kips]	[kips]	[kips]	$V_j = \Sigma F_x$	[ASCE 41-13, Eq. 4-3b]
Roof	25.0	138	3,446	0.62	541	541	541		
2nd	14.0	127	1,773	0.32	278	820	393		
1st	4.0	94	377	0.07	59	879	231		
TOTAL	-	359	5,597	1.00	879	-		Ī	

Wall Forces

N-S FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		TOTAL			
Level	Grid	WEIGHT	Acel	F _x	Vj
		[kips]	%	[kips]	[kips]
Roof	1	33	3.926	128.5	128.5
	2	44		172.9	172.9
	3	35		139.3	139.3
	4	26		100.6	100.6
2nd	1	31	2.199	67.9	196.4
	2	41		90.4	263.2
	3	31		67.2	206.5
	4	27		59.3	159.9
1st	1	23	0.628	14.3	210.8
	2	31		19.2	282.4
	3	23		14.6	221.1
	4	19		12.2	172.1
TOTAL	-	363	-	886	-

E-W MASS DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		TOTAL			
Level	Grid	WEIGHT	Acel	F _x	Vj
		[kips]	%	[kips]	[kips]
Roof	A	28	3.926	109.8	109.8
	В	37		145.2	145.2
	С	50		194.8	194.8
	D	25		97.7	97.7
2nd	А	28	2.199	61.2	170.9
	В	27		59.8	205.0
	С	50		110.7	305.5
	D	26		56.4	154.1
1st	A	20	0.628	12.7	183.6
	В	21		13.2	218.2
	С	37		23.3	328.8
	D	9		5.4	159.5
TOTAL	-	357	-	890	-

Subject:	Seismic Forces - BSE 2E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	3.5
		Checked By:		Page	

BSE-2E Diaphragm Forces

N-S FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		Sub Diaph		
Level	Sub Diaph	Area		Fp _x
		Sqft	%	[kips]
Roof	West	1,385	0.454	245.5
	East	1,668	0.546	295.8
2nd	West	1,385	0.454	178.0
	East	1,668	0.546	214.5
1st	West	1,385	0.454	104.6
	East	1,668	0.546	126.1

E-W FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

		Sub Diaph		
Level	Sub Diaph	Area		Fp _x
		Sqft	%	[kips]
Roof	North	983	0.322	174.3
	South	2,070	0.678	366.9
2nd	North	983	0.322	126.4
	South	2,070	0.678	266.1
1st	North	983	0.322	74.3
	South	2,070	0.678	156.4

SECTION 4.0 TIER 1 SHEAR CHECK

Shear Wall Capacity

Net Wall Length

System Modification Factor

Average Shear Wall Stress

QUICK CHECKS

ASCE 41-13 SEISMIC EVALUATION & RETROFIT OF EXISTING BUILDINGS CHAPTER 6 - TIER 1 EVALUATION LINEAR STATIC PROCEDURE LIFE SAFETY PERFORMANCE LEVEL BSE-1E HAZARD LEVEL

BUILDING TYPE: W1

(Wood Light Frames)

(Diagonal Sheathing)

AVERAGE SHEAR STRESS CHECK:

 $= L_{w, total} - L_{w, openings}$

	(Life Safety)	
)		

North-South Direction:

 L_w

Level	V _j [kips]	L _{w, total} [ft]	L _{w, openings} [ft]	L _w [ft]	v _{j, avg} [plf]	DCR	Quick Check
Roof	255	147	67	80	802	1.15	NO GOOD
2nd	386	147	79	68	1,420	2.03	NO GOOD
1 st	414	147	23	123	839	1.20	NO GOOD

East-West Direction:

Level	V _j [kips]	L _{w, total} [ft]	L _{w, openings} [ft]	L _w [ft]	v _{j, avg} [plf]	DCR	Quick Check
Roof	255	152	64	88	724	1.03	NO GOOD
2nd	386	137	51	86	1,123	1.60	NO GOOD
1st	414	137	34	103	1,005	1.44	NO GOOD

[ASCE 41-13, Table 3-1]

[ASCE 41-13, §A.3.2.7.1] [ASCE 41-13, §A.3.2.7.1] [ASCE 41-13, Table 4-9] [ASCE 41-13, Eq. 4-9] [ASCE 41-13, §4.5.3.3]

SECTION 5.0 RETROFIT DESIGN

Section 5.1 Shear Wall Type and Location

Subject:	Shear Wall Layout and Design BSE-1E	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.1
		Checked By:		Page	

SHEAR WALL LINES AND WALL LENGTHS ESTABLISHED ON 2ND AND FIRST FLOOR PLANS BELOW.

PROPOSED LAYOUTS WERE VERIFIED FOR CAPACITY AT BOTH BSE-1N LIFE SAFETY AND BSE-2N COLLAPSE PREVENTIONS AS SHOWN IN CALCULATIONS.

THE WALL LINES HAVE BEEN SUPERIMPOSED ON THE BUILDING EXTERIOR TO VERIFY COMPATABILITY BETWEEN FLOOR LAYOUTS.

SOME PRELIMINARY SHEAR WALL DETAILS HAVE BEEN DEVELOPED IN LATER SECTIONS OF CALCULATIONS PACKAGE.

PHOTO - Alumni House North and East Elevations

PHOTO - Alumni House South Elevation

PHOTO - Alumni House South and West Elevations

PHOTO - Alumni House Elevation Looking South from Patio

PHOTO - Alumni House Elevation Looking East from Patio

Subject:	Shear Wall Layout and Design BSE-1E LS	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.1
		Checked By:		Page	

N-S FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

Level	Grid	Vj
		[kips]
Roof	1	60.6
	2	81.5
	3	65.6
	4	47.4
2nd	1	92.5
	2	124.0
	3	97.3
	4	75.3
1 st	1	99.3
	2	133.1
	3	104.2
	4	81.1

Wall Type Ext Sheathing Vexp¹ G_d^1 Int Sheating Vnom² G_a^2 ΣVexp³ ΣGexp⁴ en No Hold Donws -> Ignored NONE Diagonal 0 0 0 0 0 0 700 8000 0 0 700 8000 Diagonal Diagonal -Ply 1 Diagonal 700 8000 1/2" ply w/ 8d @ 4" 860 18000 0.08 1400 22000 Ply 2 700 8000 1/2" ply w/ 10d @ 3" 1330 36000 0.08 1995 40000 Diagonal Ply 3 Diagonal 700 8000 1/2" ply w/10d @ 2" 1740 51000 0.08 2610 55000 Notes 1 Vexp and G_d from ASCE-41 T12-1 2 Vnom and G_a from AWC NDS as referred to in ASCE-41 12.4.4.6 3 Σ Vexp for 2-sided walls = max [2*diagonal sheathing or 1.5 x wood sheathing] 4 Σ Gexp for 2-sided shear walls = sum 1/2 diagonal stiffness with wood sheathing stiffness.

E-W FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

Level	Grid	
		Vj
		[kips]
Roof	А	51.7
	В	68.4
	С	91.8
	D	46.0
2nd	А	80.5
	В	96.6
	С	143.9
	D	72.6
1 st	А	86.5
	В	102.8
	С	154.9
	D	75.1

General Wall Information

11 ft	
10 ft	
1700000 psi	
16.5 in ²	
	11 ft 10 ft 1700000 psi 16.5 in ²

Per NDS for DF No 1 Assumed (2)2x6

Subject:	Shear Wall Layout and Design BSE-1E LS	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.1
		Checked By:		Page	

2nd to Roof -North South

Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М
		ft			plf	lbs/in per ft	lbs/in		kips	kips/ft		
1		9.5	0.86	NONE	0	0	0	0.00	0.0	0.0	0.0	3.8 OK
1		15.9	1.45	Ply 2	1995	40000	636000	1.00	60.6	3.8	1.9	3.8 OK
			0.00									
2		4	0.36	NONE	0	0	0	0.00	0.0	0.0	0.0	3.8 OK
2		5.1	0.46	Ply 2	1995	40000	204000	0.21	17.3	3.4	1.7	3.8 OK
2		6.9	0.63	Ply 2	1995	40000	276000	0.29	23.4	3.4	1.7	3.8 OK
2		7.3	0.66	Ply 2	1995	40000	292000	0.30	24.8	3.4	1.7	3.8 OK
2		4.7	0.43	Ply 2	1995	40000	188000	0.20	16.0	3.4	1.7	3.8 OK
			0.00									
3		14.7	1.34	Ply 3	2610	55000	808500	1.00	65.6	4.5	1.7	3.8 OK
4		6.25	0.57	NONE	0	0	0	0.00	0.0	0.0	0.0	3.8 OK
4		14.1	1.28	Ply 3	2610	55000	775500	1.00	47.4	3.4	1.3	3.8 OK
4		4.66	0.42	NONE	0	0	0	0.00	0.0	0.0	0.0	3.8 OK

2nd to Roof - East West

Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М
		ft			plf	lbs/in			kips	kips/ft		
A		3.4	0.31	Ply 3	2610	55000	187000	0.33	16.9	5.0	1.9	3.8 C
A		3.7	0.34	Ply 3	2610	55000	203500	0.36	18.4	5.0	1.9	3.8 C
A		3.3	0.30	Ply 3	2610	55000	181500	0.32	16.4	5.0	1.9	3.8 C
A		6.4	0.58	NONE	0	0	0	0.00	0.0	0.0	0.0	3.8 0
В		7.3	0.66	NONE	0	0	0	0.00	0.0	0.0	0.0	3.8 C
В		19.3	1.75	Ply 2	1995	40000	772000	1.00	68.4	3.5	1.8	3.8 C
				0								
C		5	0.45	Ply 3	2610	55000	275000	0.23	20.8	4.2	1.6	3.8 O
C		5.6	0.51	Ply 3	2610	55000	308000	0.25	23.3	4.2	1.6	3.8 C
C		5.8	0.53	Ply 3	2610	55000	319000	0.26	24.1	4.2	1.6	3.8 C
C		5.7	0.52	Ply 3	2610	55000	313500	0.26	23.7	4.2	1.6	3.8 C
				0								
D		10.2	0.93	Ply 1	1400	22000	224400	0.50	22.8	2.2	1.6	3.8 0
D		10.4	0.95	Ply 1	1400	22000	228800	0.50	23.2	2.2	1.6	3.8 0

Subject:	Shear Wall Layout and Design BSE-1E LS	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.1
		Checked By:		Page	

1st to 2nd - North South

Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М
		ft			plf	lbs/in			kips	kips/ft		
1		8.5	0.77	Ply 3	2610	55000	467500	0.44	40.3	4.7	1.8	3.8 OK
1		5.5	0.50	Ply 3	2610	55000	302500	0.28	26.1	4.7	1.8	3.8 OK
1		5.5	0.50	Ply 3	2610	55000	302500	0.28	26.1	4.7	1.8	3.8 OK
2		9.1	0.83	Ply 3	2610	55000	500500	0.33	40.9	4.5	1.7	3.8 OK
2		4.3	0.39	Ply 3	2610	55000	236500	0.16	19.3	4.5	1.7	3.8 OK
2		4.9	0.45	Ply 3	2610	55000	269500	0.18	22.0	4.5	1.7	3.8 OK
2		5.3	0.48	Ply 3	2610	55000	291500	0.19	23.8	4.5	1.7	3.8 OK
2		4.0	0.36	Ply 3	2610	55000	220000	0.14	18.0	4.5	1.7	3.8 OK
3		12.3	1.12	Ply 3	2610	55000	676500	0.56	54.4	4.4	1.7	3.8 OK
3		9.7	0.88	Ply 3	2610	55000	533500	0.44	42.9	4.4	1.7	3.8 OK
4		5.1	0.46	Ply 3	2610	55000	280500	0.20	15.4	3.0	1.2	3.8 OK
4		4.9	0.45	Ply 3	2610	55000	269500	0.20	14.8	3.0	1.2	3.8 OK
4		5.9	0.54	Ply 3	2610	55000	324500	0.24	17.8	3.0	1.2	3.8 OK
4		9	0.82	Ply 3	2610	55000	495000	0.36	27.2	3.0	1.2	3.8

1st to 2nd - East West

Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М
		ft			plf	lbs/in			kips	kips/ft		
A		5.5	0.50	Ply 3	2610	55000	302500	0.2	18.8	3.4	1.3	3.8 O
A		4.6	0.42	Ply 3	2610	55000	253000	0.2	15.7	3.4	1.3	3.8 O
A		6.9	0.63	Ply 3	2610	55000	379500	0.3	23.5	3.4	1.3	3.8 O
A		7.75	0.70	NONE	0	0	0	0.0	0.0	0.0	0.0	3.8 O
A		5	0.45	NONE	0	0	0	0.0	0.0	0.0	0.0	3.8 O
A		6.6	0.60	Ply 3	2610	55000	363000	0.3	22.5	3.4	1.3	3.8 O
В		7.3	0.66	Ply 2	1995	40000	292000	0.2	22.7	3.1	1.6	3.8 O
В		23.7	2.15	Ply 2	1995	40000	948000	0.8	73.8	3.1	1.6	3.8 O
C		5.1	0.46	Ply 3	2610	55000	280500	0.2	22.4	4.4	1.7	3.8 O
C		5.5	0.50	Ply 3	2610	55000	302500	0.2	24.2	4.4	1.7	3.8 O
C		5.3	0.48	Ply 3	2610	55000	291500	0.2	23.3	4.4	1.7	3.8 O
C		5.4	0.49	Ply 3	2610	55000	297000	0.2	23.8	4.4	1.7	3.8 O
C		11.4	1.04	Ply 3	2610	55000	627000	0.3	50.2	4.4	1.7	3.8 O
D		22.6	2.05	Ply 3	2610	55000	1243000	1.0	96.6	4.3	1.6	3.8 0

Degenkolb

Subject:	Tier 2 Wall Checks at BSE-2E CP	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.1
		Checked By:		Page	

N-S FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

Level	Grid	Vj
		[kips]
Roof	1	128.5
	2	172.9
	3	139.3
	4	100.6
2nd	1	196.4
	2	263.2
	3	206.5
	4	159.9
1st	1	210.8
	2	282.4
	3	221.1
	4	172.1

Wall Type Ext Sheathing Vexp¹ G_d^1 Int Sheating Vnom² G_a^2 ΣVexp³ ΣGexp⁴ e_n No Hold Donws -> Ignored NONE Diagonal 0 0 0 0 0 0 700 8000 8000 Diagonal 0 700 Diagonal -0 Ply 1 Diagonal 700 8000 1/2" ply w/ 8d @ 4" 860 18000 0.08 1400 22000 Ply 2 Diagonal 700 8000 1/2" ply w/ 10d @ 3" 1330 36000 0.08 1995 40000 Ply 3 Diagonal 700 8000 1/2" ply w/10d @ 2" 1740 51000 0.08 2610 55000 Notes 1 Vexp and G_d from ASCE-41 T12-1 2 Vnom and G_a from AWC NDS as referred to in ASCE-41 12.4.4.6 3 Σ Vexp for 2-sided walls = max [2*diagonal sheathing or 1.5 x wood sheathing] 4 Σ Gexp for 2-sided shear walls = sum 1/2 diagonal stiffness with wood sheathing stiffness.

E-W FORCE DISTRIBUTION (FLEXIBLE DIAPHRAGM)

Level	Grid	
		Vj
		[kips]
Roof	А	109.8
	В	145.2
	С	194.8
	D	97.7
2nd	A	170.9
	В	205.0
	С	305.5
	D	154.1
1st	A	183.6
	В	218.2
	С	328.8
	D	159.5

General Wall Information

H 2nd-Roo H 1st-2nd	11 ft 16 ft	Includes craw space
E	1700000 psi	Per NDS for DF No 1
A _{chord}	16.5 in ²	Assumed (2)2x6

Subject:	Tier 2 Wall Checks at BSE-2E CP	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.1
		Checked By:		Page	

2nd to Roof -North South

Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М
		ft			plf	lbs/in per ft	lbs/in		kips	kips/ft		
1		9.5	0.86	NONE	0	0	0	0.00	0.0	0.0	0.0	4.5 C
1		15.9	1.45	Ply 2	1995	40000	636000	1.00	128.5	8.1	4.1	4.5 C
			0.00									
2		4	0.36	NONE	0	0	0	0.00	0.0	0.0	0.0	4.5 C
2		5.1	0.46	Ply 2	1995	40000	204000	0.21	36.7	7.2	3.6	4.5 C
2		6.9	0.63	Ply 2	1995	40000	276000	0.29	49.7	7.2	3.6	4.5 C
2		7.3	0.66	Ply 2	1995	40000	292000	0.30	52.6	7.2	3.6	4.5 C
2		4.7	0.43	Ply 2	1995	40000	188000	0.20	33.9	7.2	3.6	4.5 C
			0.00									
3		14.7	1.34	Ply 3	2610	55000	808500	1.00	139.3	9.5	3.6	4.5 C
4		6.25	0.57	NONE	0	0	0	0.00	0.0	0.0	0.0	4.5 C
4		14.1	1.28	Ply 3	2610	55000	775500	1.00	100.6	7.1	2.7	4.5 C
4		4.66	0.42	NONE	0	0	0	0.00	0.0	0.0	0.0	4.5 0

2nd to Roof - East West

Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М	ОК
		ft			plf	lbs/in			kips	kips/ft			
A		3.4	0.31	Ply 3	2610	55000	187000	0.33	35.9	10.6	4.0	4.5	OK
A		3.7	0.34	Ply 3	2610	55000	203500	0.36	39.1	10.6	4.0	4.5	ОК
A		3.3	0.30	Ply 3	2610	55000	181500	0.32	34.8	10.6	4.0	4.5	ОК
A		6.4	0.58	NONE	0	0	0	0.00	0.0	0.0	0.0	4.5	OK
В		7.3	0.66	NONE	0	0	0	0.00	0.0	0.0	0.0	4.5	ОК
В		19.3	1.75	Ply 2	1995	40000	772000	1.00	145.2	7.5	3.8	4.5	ОК
C		5	0.45	Ply 3	2610	55000	275000	0.29	56.9	11.4	4.4	4.5	ОК
C		5.6	0.51	Ply 3	2610	55000	308000	0.33	63.8	11.4	4.4	4.5	OK
C		5.8	0.53	Ply 3	2610	55000	319000	0.34	66.1	11.4	4.4	4.5	ОК
C		5.7	0.52	Ply 3	2610	55000	313500	0.33	64.9	11.4	4.4	4.5	ОК
D		10.2	0.93	Ply 1	1400	22000	224400	0.50	48.4	4.7	3.4	4.5	ОК
D		10.4	0.95	Ply 1	1400	22000	228800	0.50	49.3	4.7	3.4	4.5	OK

Subject: Tier 2 Wall Checks at BSE-2E CP							Job Number:		B7901001.00 Date: 03/22				
Job:		UCSF Alumni H	louse					Bv:		RMG		Section:	
								Checked By:]	Page	
							0					2	
1st to 2nd - Nort	h South						0						
Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	М	
		ft			plf	lbs/in			kips	kips/ft			
1		8.5	0.77	Ply 3	2610	55000	467500	0.44	85.6	10.1	3.9	4.5	ОК
1		5.5	0.50	Ply 3	2610	55000	302500	0.28	55.4	10.1	3.9	4.5	ОК
1		5.5	0.50	Ply 3	2610	55000	302500	0.28	55.4	10.1	3.9	4.5	ОК
2		9.1	0.83	Ply 3	2610	55000	500500	0.33	86.8	9.5	3.7	4.5	ОК
2		4.3	0.39	Ply 3	2610	55000	236500	0.16	41.0	9.5	3.7	4.5	ОК
2		4.9	0.45	Ply 3	2610	55000	269500	0.18	46.7	9.5	3.7	4.5	ОК
2		5.3	0.48	Ply 3	2610	55000	291500	0.19	50.6	9.5	3.7	4.5	ОК
2		4.0	0.36	Ply 3	2610	55000	220000	0.14	38.2	9.5	3.7	4.5	ОК
3		12.3	1.12	Ply 3	2610	55000	676500	0.56	115.4	9.4	3.6	4.5	ОК
3		9.7	0.88	Ply 3	2610	55000	533500	0.44	91.0	9.4	3.6	4.5	ОК
4		5.1	0.46	Ply 3	2610	55000	280500	0.27	42.9	8.4	3.2	4.5	ОК
4		4.9	0.45	Ply 3	2610	55000	269500	0.26	41.2	8.4	3.2	4.5	ОК
4		5.1	0.46	Ply 3	2610	55000	280500	0.27	42.9	8.4	3.2	4.5	ОК
4		9	0.82	Ply 3	2610	55000	495000	0.47	75.7	8.4	3.2	4.5	ОК
1st to 2nd - East	West	Mar II I an and	1. /h	14/- II 4	Constitut	C C		0/1/	Magazi	14-	DCD		
Parallel grid	Wall Seg #	Wall length	h/b	Wall type	Capacity	G	К	%V	Vpanel	Vs	DCR	M	
		π		D 1 0	pir	IDS/IN			KIPS 51.0	kips/ft	2.6		o #
A		5.5	0.50	PIV 3	2610	55000	302500	0.3	51.9	9.4	3.6	4.5	UK OK
A		4.6	0.42	PIV 3	2610	55000	253000	0.3	43.4	9.4	3.6	4.5	OK OK
A		6.9	0.63	PIY 3	2610	55000	379500	0.4	05.2	9.4	3.0	4.5	OK OK
A		7.75	0.70	NONE	0	0	0	0.0	0.0	0.0	0.0	4.5	OK
A		5	0.45		2610	55000	262000	0.0	0.0 62.2	0.0	0.0	4.5	OK
A		0.0	0.00	FIYS	2010	33000	303000	0.4	02.5	9.4	5.0	4.5	OK
B		73	0.66	Dly 2	1005	40000	202000	0.2	18.3	6.6	3 3	15	OK
B		7.3	2 15	Ply 2	1995	40000	232000	0.2	40.5	6.6	3.5	4.5	OK
		23.7	2.15	1192	1555	40000	540000	0.0	150.7	0.0	5.5	+.J	
C		5 1	0.46	Plv 3	2610	55000	280500	0.2	47.6	0 3	3.6	45	OK
с с		5.1	0.40	Ply 3	2610	55000	302500	0.2	47.0 51 A	9.5 Q 2	3.6	4.J 4 5	OK
c c		5.3	0.50	Plv 3	2610	55000	291500	0.2	J1.4 ДQ 5	9.5 Q 2	3.6	4.5	OK
c c		5.5	0.48	Ply 3	2610	55000	297000	0.2	49.5 50.4	9.5 Q Q	3.6	4.5	OK
C		J.4 11 A	1 04	Ply 3	2610	55000	627000	0.2	106 5	9.5 Q Q	3.5	ر. ب ۲.5	OK
C		11.4	1.04	1 19 5	2010	55000	027000	0.5	100.5	5.5	5.0	+.J	
ח		22	2.00	Plv 3	2610	55000	1210000	1.0	205.0	9.3	3.6	4.5	ок
5		1 22	2:00	, 🧉	2010	55500	1210000	1.0	205:0	5.5	5.0	7.5	

UCSF Alumni House Seismic Study Structural Calculations Package UCSF Alumni House

> <u>Section 5.2</u> Diaphragm Type

Subject:	Daphragm	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.2
		Checked By:		Page	

CRITICAL FIRST AND SECOND FLOOR DIAPHRAGM SPANS SHOWN ON PLAN BELOW.

PROPOSED LAYOUTS WERE VERIFIED FOR CAPACITY AT BOTH BSE-1N LIFE SAFETY AND BSE-2N COLLAPSE PREVENTIONS AS SHOWN IN CALCULATIONS.

SOME PRELIMINARY DIAPHRAGM LOAD PATH DETAILS HAVE BEEN DEVELOPED IN LATER SECTIONS OF CALCULATIONS PACKAGE.

DIAPRHAGM AT 1ST LEVEL IS CONSIDERED TO WORK AS A TENSION/COMPRESSION ELEMENT, TRANSFERING LOAD DIRECTLY TO BUILDING FOUNDATION AND THEREFORE IS NOT CONSIDERED IN NEED OF RETROFIT.

Subject:	Daphragm Size - BSE-1E LS	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.2
		Checked By:		Page	

Diaphragm Type

Number	Grade	Nail	Spacing, in	thk, in	Nom lbs/ft	Exp lbs/ft	Comment
1	Struct 1	8d	6	15/32	540	810	Expected Capacity - 1 E times NDS SDDWS
2	Struct 1	8d	4	15/32	720	1080	2015 fully blocked with 2" poiled fees
3	Struct 1	10d	4	15/32	850	1275	2015 Tully blocked with 2 mailed face
4	Struct 1	10d	2	15/32	1460	2190	

Roof Diaphragm

Forces N-S

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Туре	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			
East	1-2	45.9	30.1	1.5	3	1275	115.6	1921.1	1.5	3	ОК
West	2-3	24	73.25	0.3	3	1275	139.4	951.2	0.7	3	ОК

Forces E-W

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Diaph Sheathing	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			
North	B-C	43.5	24	1.8	3	1275	82.1	1710.7	1.3	3	Oł
South	A-B	30.1	68.6	0.4	3	1275	172.9	1260.1	1.0	3	Oł

2nd Floor

Forces N-S

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Diaph Sheathing	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			
West	1-2	45.9	30.1	1.5	2	1080	83.9	1393.3	1.3	3	Ok
North	2-3	22.6	73.25	0.3	2	1080	101.1	689.9	0.6	3	OK

Forces E-W

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Diaph Sheathing	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			ĺ
North	B-C	43.5	22.6	1.9	2	1080	59.6	1317.6	1.2	3	Oł
West	A-B	30.1	68.6	0.4	2	1080	125.4	913.9	0.8	3	Oł

<u>1st Floor</u>

Forces N-S

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Diaph Sheathing	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			l
West	1-2	45.9	30.1	1.5	1	810	49.3	819.0	1.0	3	Oł
North	2-3	22.6	73.25	0.3	1	810	59.4	405.5	0.5	3	Oł

Forces E-W

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Diaph Sheathing	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			
North	B-C	43.5	22.6	1.9	1	810	35.0	774.5	1.0	3	Oł
West	A-B	30.1	68.6	0.4	1	810	73.7	537.2	0.7	3	OI

Subject:	Daphragm Size - BSE-2E CP	Job Number:	B7901001.00	Date:	03/22/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.2
		Checked By:		Page	

Diaphragm Type

Number	Grade	Nail	Spacing, in	thk, in	Nom lbs/ft	Exp lbs/ft	Comment
1	Struct 1	8d	6	15/32	540	810	Expected Capacity = 1.5 times NDS SDBWS
2	Struct 1	8d	4	15/32	720	1080	2015 fully blocked with 2" pailed face
3	Struct 1	10d	4	15/32	850	1275	width nominal canacity
4	Struct 1	10d	2	15/32	1460	2190	width hommal capacity

Roof Diaphragm

Forces N-S

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	Туре	Capacity	Fpx	v	DCR	М	ſ
	Grids	ft	ft			plf	kips	plf			ſ
East	1-2	45.9	30.1	1.5	3	1275	245.5	4077.4	3.2	4	ОК
West	2-3	24	73.25	0.3	3	1275	295.8	2018.9	1.6	4	ОК

Forces E-W

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	aph Sheath	Capacity	Fpx	v	DCR	М	ĺ
	Grids	ft	ft			plf	kips	plf			Í
North	B-C	43.5	24	1.8	3	1275	174.3	3630.9	2.8	4	Oł
South	A-B	30.1	68.6	0.4	3	1275	366.9	2674.5	2.1	4	Oł

2nd Floor

Forces N-S

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	aph Sheath	Capacity	Fpx	v	DCR	М	
	Grids	ft	ft			plf	kips	plf			Γ
West	1-2	45.9	30.1	1.5	2	1080	178.0	2957.2	2.7	4	Ok
North	2-3	22.6	73.25	0.3	2	1080	214.5	1464.2	1.4	4	Oł

Forces E-W

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	aph Sheath	Capacity	Fpx	v	DCR	М	ĺ
	Grids	ft	ft			plf	kips	plf			ĺ
North	B-C	43.5	22.6	1.9	2	1080	126.4	2796.5	2.6	4	Ok
West	A-B	30.1	68.6	0.4	2	1080	266.1	1939.8	1.8	4	ОК

<u>1st Floor</u>

Forces N-S

Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	aph Sheath	Capacity	Fpx	v	DCR	М	Ī
	Grids	ft	ft			plf	kips	plf			Ī
West	1-2	45.9	30.1	1.5	1	810	104.6	1738.3	2.1	4	O
North	2-3	22.6	73.25	0.3	1	810	126.1	860.7	1.1	4	Oł

Forces E-W

101000 2 11											
Diaphragm	Span	Span	Depth	Aspect Ratio (L/W)	aph Sheath	Capacity	Fpx	v	DCR	М	ĺ
	Grids	ft	ft			plf	kips	plf			ĺ
North	B-C	43.5	22.6	1.9	1	810	74.3	1643.8	2.0	4	Ok
West	A-B	30.1	68.6	0.4	1	810	156.4	1140.2	1.4	4	ОК

UCSF Alumni House Seismic Study Structural Calculations Package UCSF Alumni House

> Section 5.3 Details

Date: 64/21/2017 Subject: Job Number: DETATL A Job: By: Section: ACUMIT HELLRE **Checked By:** Page 2 of IN PLANÉ · LOAD TRANSFER FROM SILL PLATE TO PLATE BENT THROUGH WOOD SCREWS. USE LS. DESTEN. A35 CLOP FOR SHEAR EXP = 2.64/CLIP @ 16" O.C. For Bent PLATE @ 24" O.C. => 2.6" x 24/16 = 3.94/Bent PLATE · WITHDRAWL LOUP TRANSFER TO BOUT PLATE IS UNEFDUCED STESMEC = 1.54 @ 16" O.C. @ BSE-ZE = 1.5 x 24/16 = 2.314/BENT PLATE cover since For 3.94 IN PLANE & 2.34 WITHDRAUGE Vn = 2 + Kf = 717# × 3.37 = 720 #/Screw Wu = 172#/in × ++ × (7/3)(4") = 1,553#/sozen => USE 6 SCREWS = Vn = 6+720 = 4.32 h > 3.9 du Wn=6x1.54 = 9.04 > 2.3 M enech Z'x: $\frac{1}{2 - 4} \frac{1}{3 \cdot 4} = \frac{1}{2 - 3} \left(\frac{2 \cdot 3}{3 \cdot 4} \right) = 30 \cdot 5^{\circ}$ $p = 4 \times \frac{2}{3} = 2 \cdot 67^{\circ}$ Z' d = (w' * p) Z' = (1.55 * 2.67)(0.72)wip con² x + 71 m² d (1.55 x7.67) Con 30.5 + 0.77 × m³ 30 2' x = 0.92 1/screw = 5.54 @6 Screwer > 4.54 de

Subject: Job Number: Date: DETAIL A Job: By: Section: **Checked By:** Page of 2 EPCXY Awaton; Vr= 3.94 $W_{R} = 2.6^{n}$ PROFIS: (2) 5/8 " Ø EPCXY Award JN Per 2,500 pi CRACTO SEE PRENt concurre Vu= 6980# w== 8590 # NOTE \$=1 $p_{cn} = 0.56$ = 0.30 $\frac{20cr}{1.2} = 0.72$ di

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Degenkolb MXN

T

ð

х

UCSF Alumni House B7901001.00 4/21/2017

Specifier's comments: Preliminary Retrofit Detailing

1 Input data Anchor type and diameter: HIT-RE 500 V3 + HAS 5/8 $h_{ef.act}$ = 6.000 in. ($h_{ef,limit}$ = - in.) Effective embedment depth: 5.8 Material: **Evaluation Service Report:** ESR-3814 Issued I Valid: 1/1/2017 | 1/1/2019 Proof[.] Design method ACI 318-14 / Chem Stand-off installation: $e_b = 0.000$ in. (no stand-off); t = 0.250 in. I_x x I_y x t = 8.000 in. x 9.000 in. x 0.250 in.; (Recommended plate thickness: not calculated Anchor plate: no profile Profile: Base material: cracked concrete, 2500, f_c ' = 2500 psi; h = 9.000 in., Temp. short/long: 32/32 °F Installation: hammer drilled hole, Installation condition: Dry Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Seismic loads (cat. C, D, E, or F) Tension load: yes (17.2.3.4.3 (d)) Shear load: yes (17.2.3.5.3 (c)) Geometry [in.] & Loading [lb, in.lb] ASCE-41 LOADS ARE UNREDUCED, THEREFORE LOADS ARE GREATER z THAN OMEGA NAUGHT. y. 6 0 0.25

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Degenkolb MXN |

Page: Project: Sub-Project I Pos. No.: Date:

2 UCSF Alumni House B7901001.00 4/21/2017

2 Load case/Resulting anchor forces

Load case: Design loads

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	2011	2502	2000	-1504
2	2011	2502	2000	1504
max. concrete co	mpressive strain:		0.11 [‰]	
max. concrete co	mpressive stress:		461 [psi]	
resulting tension	force in (x/y)=(0.00	0/1.500):	4022 [lb]	
resulting compre	ssion force in (x/y)=	(0.000/4.243):	1422 [lb]	

3 Tension load

	Load N _{ua} [lb]	Capacity 🖕 N _n [lb]	Utilization $\beta_N = N_{ua}/\phi N_n$	Status
Steel Strength*	2011	10650	19	OK
Bond Strength**	4022	6406	63	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Strength**	4022	5583	73	OK

* anchor having the highest loading **anchor group (anchors in tension)

3.1 Steel Strength

N_{sa}	= ESR value	refer to ICC-ES ESR-3814
$\phi \ N_{sa}$	l≥ N _{ua}	ACI 318-14 Table 17.3.1.1

Variables

A _{se,N} [in. ²]	f _{uta} [psi] 72500			
Calculations				
N _{sa} [lb] 16385		1.0 PER A	SCE 41-13	
Results				
N _{sa} [lb]	∮ _{steel}	∲ nonductile	φ N _{sa} [lb]	N _{ua} [lb]
16385	0.650	1.000	10650	2011

www.hilti.us			Profis Anchor 2
Company:	Degenkolb	Page:	3
Specifier:	MXN	Project:	UCSF Alumni House
Address:		Sub-Project I Pos. No.:	B7901001.00
Phone I Fax:		Date:	4/21/2017
E-Mail:			

3.2 Bond Strength

$N_{ag} = \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ec1,Na} \psi_{ec2,Na} \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-14 Eq. (17.4.5.1.b)
$\phi N_{ag} \ge N_{ua}$	ACI 318-14 Table 17.3.1.1
A _{Na} = see ACI 318-14, Section 17.4.5.1, Fig. R 17.4.5.1(b)	
$A_{Na0} = (2 c_{Na})^2$	ACI 318-14 Eq. (17.4.5.1c)
$c_{Na} = 10 d_a \sqrt{\frac{\tau uncr}{1100}}$	ACI 318-14 Eq. (17.4.5.1d)
$\Psi_{\text{ec,Na}} = \left(\frac{1}{1 + \frac{e_{\text{N}}}{c_{\text{Na}}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.5.3)
$\Psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{C_{a,\text{min}}}{C_{\text{Na}}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.5.4b)
$\psi_{cp,Na} = MAX\left(\frac{C_{a,min}}{C_{ac}}, \frac{C_{Na}}{C_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.5.5b)
$N_{ba} = \lambda_{a} \cdot \tau_{k,c} \cdot \alpha_{N,seis} \cdot \pi \cdot d_{a} \cdot h_{ef}$	ACI 318-14 Eq. (17.4.5.2)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	τ _{k,c} [psi]	
2210	0.625	6.000	6.000	1260	
e _{c1,N} [in.]	e _{c2,N} [in.]	c _{ac} [in.]	λa	α _{N,seis}	
0.000	0.000	13.621	1.000	0.950	
Calculations					
c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψ ed.Na		
8.819	320.65	311.09	0.904	-	
Ψ ec1,Na	Ψ ec2,Na	Ψ cp,Na	N _{ba} [lb]	_	
1.000	1.000	1.000	14102		
Results					
N _{ag} [lb]	∮ bond	∮ seismic	∮ nonductile	φ N _{ag} [lb]	N _{ua} [lb]
13141	0.650	0.750	1.000	6406	4022
		\mathbf{X}		\sim	`
		1.0 PER ASCE	41-13		9855 LBS

www.hilti.us			Profis Anchor 2.7
Company:	Degenkolb	Page:	4
Specifier:	MXN	Project:	UCSF Alumni House
Address:		Sub-Project I Pos. No.:	B7901001.00
Phone I Fax:		Date:	4/21/2017
E-Mail:			

3.3 Concrete Breakout Strength

N _{cbg}	$= \left(\frac{A_{Nc}}{A_{Nc0}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-14 Eq. (17.4.2.1b)
φ N _{cbg}	g ≥ N _{ua}	ACI 318-14 Table 17.3.1.1
A _{Nc}	see ACI 318-14, Section 17.4.2.1, Fig. R 17.4.2.1(b)	
A_{Nc0}	= 9 h _{ef} ²	ACI 318-14 Eq. (17.4.2.1c)
ψ ec,N	$= \left(\frac{1}{1 + \frac{2 e_{\rm N}}{3 h_{\rm ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
$\psi \; ed, N$	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
$\psi_{\text{ cp,N}}$	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
Nb	$= k_c \lambda_a \sqrt{f_c} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	Ψ c,N
6.000	0.000	0.000	6.000	1.000
c _{ac} [in.]	k _c	λa	f _c [psi]	
13.621	17	1.000	2500	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	Ψ ec1,N	Ψ ec2,N	$\psi_{\text{ ed},\text{N}}$	$\Psi_{\text{cp,N}}$	N _b [lb]
330.00	324.00	1.000	1.000	0.900	1.000	12492
Results						
N _{cbg} [lb]	∮ concrete	∮ seismic	ϕ nonductile	φ N _{cbg} [lb]	N _{ua} [lb]	
11451	0.650	0.750	1.000	5583	4022	DCR = 0.47
		1.0 PER ASCE 4	1-13		8590 LBS	

www.hilti.us			Profis Anchor 2
Company:	Degenkolb	Page:	5
Specifier:	MXN	Project:	UCSF Alumni House
Address:		Sub-Project I Pos. No.:	B7901001.00
Phone I Fax:		Date:	4/21/2017
E-Mail:			

4 Shear load

	Load V _{ua} [lb]	Capacity _φ V _n [lb]	Utilization $\beta_V = V_{ua}/\phi V_n$	Status
Steel Strength*	2502	5898	43	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Concrete Breakout Strength controls)*	2502	8016	32	OK
Concrete edge failure in direction y-**	4273	4891	88	OK

* anchor having the highest loading **anchor group (relevant anchors)

4.1 Steel Strength

$V_{sa,eq}$	= ESR value	refer to ICC-ES ESR-3814
φ V _{stee}	el ≥ V _{ua}	ACI 318-14 Table 17.3.1.1

Variables

4.2 Pryout Strength (Concrete Breakout Strength controls)

V_{cp}	$= k_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-14 Eq. (17.5.3.1a)
φ V _{cp}	$\geq V_{ua}$	ACI 318-14 Table 17.3.1.1
ANC	See ACI 316-14, Section 17.4.2.1, Fig. R 17.4.2.1(D)	
A _{Nc0}	= 9 n _{ef}	ACI 318-14 Eq. (17.4.2.1c)
Ψ ec,N	$= \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.4)
Ψ ed,N	$= 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-14 Eq. (17.4.2.5b)
Ψ cp,N	$= MAX\left(\frac{c_{a,min}}{c_{ac}}, \frac{1.5h_{ef}}{c_{ac}}\right) \le 1.0$	ACI 318-14 Eq. (17.4.2.7b)
N _b	$= k_{c} \lambda_{a} \sqrt{f_{c}} h_{ef}^{1.5}$	ACI 318-14 Eq. (17.4.2.2a)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	6.000	0.000	0.000	6.000
Ψ c,N	c _{ac} [in.]	k _c	λa	ŕ _c [psi]
1.000	13.621	17	1.000	2500

Calculations

A _{Nc} [in. ²] 165.00	A _{Nc0} [in. ²] 324.00	<u>Ψ ec1,N</u> 1.000	<u>Ψ ec2,N</u> 1.000	Ψ ed,N 0.900	<u>Ψ cp,N</u> 1.000	N _b [lb] 12492
Results						
V _{cp} [lb]	φ concrete	∮ seismic	ϕ nonductile	φ V _{cp} [lb]	V _{ua} [lb]	
11451	0.700	1.000	1.000	8016	2502	-
	\sim			\sim		
		1.0 PER ASCE 4	1-13		11451 LBS	

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us			Profis Anchor 2
Company:	Degenkolb	Page:	6
Specifier:	MXN	Project:	UCSF Alumni House
Address:		Sub-Project I Pos. No.:	B7901001.00
Phone I Fax:		Date:	4/21/2017
E-Mail:			

4.3 Concrete edge failure in direction y-

V_{cbg}	$= \left(\frac{A_{Vc}}{A_{Vc0}}\right) \psi_{ec,V} \psi_{ed,V} \psi_{c,V} \psi_{h,V} \psi_{parallel,V} V_{b}$	ACI 318-14 Eq. (17.5.2.1b)
φ V _{cbg}	g≥V _{ua}	ACI 318-14 Table 17.3.1.1
A _{Vc}	see ACI 318-14, Section 17.5.2.1, Fig. R 17.5.2.1(b)	
A_{Vc0}	$= 4.5 c_{a1}^2$	ACI 318-14 Eq. (17.5.2.1c)
Ψ ec,V	$= \left(\frac{1}{1 + \frac{2e_v}{3c_{a1}}}\right) \le 1.0$	ACI 318-14 Eq. (17.5.2.5)
$\psi_{\text{ed,V}}$	$= 0.7 + 0.3 \left(\frac{c_{a2}}{1.5c_{a1}} \right) \le 1.0$	ACI 318-14 Eq. (17.5.2.6b)
$\psi_{h,V}$	$=\sqrt{\frac{1.5c_{a1}}{h_a}} \ge 1.0$	ACI 318-14 Eq. (17.5.2.8)
V_{b}	$= \left(7 \left(\frac{I_e}{d_a}\right)^{0.2} \sqrt{d_a}\right) \lambda_a \sqrt{f_c} c_{a1}^{1.5}$	ACI 318-14 Eq. (17.5.2.2a)

Variables

c _{a1} [in.]	c _{a2} [in.]	e _{cV} [in.]	Ψc,V	h _a [in.]
6.000	-	0.704	1.000	9.000

l _e [in.]	λa	d _a [in.]	ť _c [psi]	Ψ parallel,V
5.000	1.000	0.625	2500	1.000

Calculations

www.hilti.us

Company:	Degenkolb	Page:	7
Specifier:	MXN	Project:	UCSF Alumni House
Address:		Sub-Project I Pos. No.:	B7901001.00
Phone I Fax:		Date:	4/21/2017
E-Mail:			

6 Warnings

- The anchor design methods in PROFIS Anchor require rigid anchor plates per current regulations (ETAG 001/Annex C, EOTA TR029, etc.). This
 means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be
 sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Anchor calculates the minimum required anchor plate
 thickness with FEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid base plate assumption
 is valid is not carried out by PROFIS Anchor. Input data and results must be checked for agreement with the existing conditions and for
 plausibility!
- Condition A applies when supplementary reinforcement is used. The Φ factor is increased for non-steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions
- Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard!
- An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-14, Chapter 17, Section 17.2.3.4.3 (a) that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, the connection design (tension) shall satisfy the provisions of Section 17.2.3.4.3 (b), Section 17.2.3.4.3 (c), or Section 17.2.3.4.3 (d). The connection design (shear) shall satisfy the provisions of Section 17.2.3.5.3 (a), Section 17.2.3.5.3 (b), or Section 17.2.3.5.3 (c).
- Section 17.2.3.4.3 (b) / Section 17.2.3.5.3 (a) require the attachment the anchors are connecting to the structure be designed to undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. Section 17.2.3.4.3 (c) / Section 17.2.3.5.3 (b) waive the ductility requirements and require the anchors to be designed for the maximum tension / shear that can be transmitted to the anchors by a non-yielding attachment. Section 17.2.3.4.3 (d) / Section 17.2.3.5.3 (c) waive the ductility requirements and require the design strength of the anchors to equal or exceed the maximum tension / shear obtained from design load combinations that include E, with E increased by $\omega_{0.}$.
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-14, Section 17.8.1.

Fastening does not meet the design criteria!

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail: Degenkolb MXN | Page: Project: Sub-Project I Pos. No.: Date:

8 UCSF Alumni House B7901001.00 4/21/2017

7 Installation data

 Anchor plate, steel: Anchor type and dia

 Profile: no profile
 Installation torque: 7

 Hole diameter in the fixture: d_f = 0.688 in.
 Hole diameter in the

 Plate thickness (input): 0.250 in.
 Hole depth in the ba

 Recommended plate thickness: not calculated
 Minimum thickness

 Drilling method: Hammer drilled
 Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

Anchor type and diameter: HIT-RE 500 V3 + HAS 5/8 Installation torque: 720.000 in.lb Hole diameter in the base material: 0.750 in. Hole depth in the base material: 6.000 in. Minimum thickness of the base material: 7.500 in.

7.1 Recommended accessories

1 -2.000 1.500 - 6.000 -2 2.000 1.500 - 6.000 -

Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor (c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.us

Company: Specifier: Address: Phone I Fax: E-Mail:

Degenkolb MXN

Page: Project: Sub-Project I Pos. No.: Date:

9 UCSF Alumni House B7901001.00 4/21/2017

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each case
 by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data or
 programs, arising from a culpable breach of duty by you.

Subject: DETAIL C Job Number: Date: Job: By: Section: **Checked By:** Page 2 of 1,275 #/-1 4 121 ... 1" f t V Q P = V 8c2 + 8c2 + 31E2 1275#/st = 346# 1275 a #/ft colech Sanaus ~* 20[#] ~ 1 bc* Rey E/CL . R= 1275/6 = 160# 2 wF 10d = 115 # 2'= 115# × 3.37 × 1 = 322# > Vab Vab · CHECH ANGLE 16 6a = 0.06" Iam AT SINGLE LEG $\frac{1275}{1275} = \sqrt{160^{\pm}} = 0.6 \times 33 \times 12^{11} \times 0.06^{11} = 14^{11}$ 1275 " 160# ler

UCSF Alumni House Seismic Study Structural Calculations Package UCSF Alumni House

> Section 5.4 Hold Downs

QUP = 211/3.5 = 60~

Date: 4/24/17 Subject: Job Number: B790161.00 HOUD DUNIE Job: Section By: LCGF AUMUE MXW NOWE **Checked By:** Page of · SIMPSON HOGB INTO 41/2" MON MEMBER (i.e. (3) 2×6) " DF/SP ALL = 9,920 # @ CD=1.6 DF/SP EXP = ALL × 3.32 = 1.6 × 1.5 = 30.6 he =) @ Z Haup Dand PER CHORD TC = 2×30.8 = 61.64 > 604 @ BSE-ZE CP · Award IS 7/8" \$ DEVELOP EXPECTED ANOHOR CAPACITY TK.B. = FN+ × Ab × 1.1 ASSUNE 62 53 A.O. Fre= 75 mi . Fur = 0.75+75 mi = 56.7 mi = 56.7 mi = (7/2)2 TT/4 x).1 = 37.24 2^h CAP g. n JAT/A, - EXE FB2 = 0.25 + fic x JAT/A. + A. ~ 2.0 = 0.85 + 4 mi + 2 x 16 m 2 = 10ah can use 31×311 PL WASHGER.

By Betton: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Place Parnes		
$\frac{1}{1000} permu 2^{100} permu 2^{100} permu 1^{100} permu 2^{100} permu 1^{100} permu 2^{100} permu 1^{100} per$	VCSF ALUM HOUSE	By:	Section:
HOLD DENNY 200 TO 1 ⁴⁴ = 66^{14} @B3E-1 $66/m_{15} = 22.6^{11}$ = 115^{4} @B3E-7 $115/m_{10} = 32.4^{14}$ = $32m_{15}$ and $512m_{15}$ The $15/m_{10} = 32.4^{14}$ = $32m_{15}$ and $512m_{15}$ The $2m_{15}$ and $512m_{15}$ DF/SP REL = $6.76^{14} \times 3.37 \times 1.5 \pm 1.6 = 21^{14}$ (2) HDW8 \times SDS 7.5 EXP CAP $\times 472^{14} > 33^{14}$		Checked By:	Page <u>3</u> of
Here powr 2^{HD} to 1^{ex} = $6E^{L} \oplus BBe-1$ $68/m_{LS} = 22.6^{h}$ = $115^{h} \oplus BBe-7$ $115/m \cdot p = 32.9^{h}$ > 3.5mPSON TROLE-BEE HOULER DES.S DATO 3" MAN $DF/SP \ REL = 6.765^{h} \oplus C_{B} = 1.6$ $DF/SP \ reP = 6.76^{h} \times 3.37 \times 1.5 \pm 1.6 = 21^{h}$ (2) HOW 8 × 5D5 7.5 $ERP \ CHP = 472^{h} > 33^{h}$			
= 66^{L} @B2E-1 $66/m_{LS} = 27.6^{h}$ = 115^{h} @B3E-7 $115/m_{P} = 37.9^{h}$ = 3.0MESOU STOOLG-THE HOU(*DSE.S DUTO 8" MEN DF/SP AEL = $6.76^{L} \times 3.37 \times 1.5 \pm 1.6 = 21^{h}$ (2) HDW 6×5057.5 EXP $CAP + 472^{h} > 33^{h}$	HOUD Dans 200 TO Int		
= 66^{L} (PBSE-1) $66/m_{LS} = 22.6^{H}$ = 115^{H} (PBSE-7) $115/m_{LP} = 32.9^{H}$ = 350008300 (TROLG-TRE HULL/SDS2.5 DUTO 3" MLDO DF/SP AEL = 6.765^{H} (C $_{D} = 1.6$ DF/SP exP = $6.76^{H} \times 3.37 \times 1.5 \div 1.6 = 21^{H}$ (2) HDW 6×5057.5 (EXP CAP + $472^{H} > 33^{H}$			
= 115 ^k @B3E-7 $115/m \varphi = 37.9^{k}$ = 50MPSON STROLG-TRE HOUL(*\$55.5 DATO 3 ^k MAD) DF/SP AEL = 61765 ^k @ C ₅₀ =1.6 DF/SP exP = 6.76 ^k × 3.37 × 1.5÷1.6 = 21 ^k (2) HDW 5 × 5057.5 EXP CAP + 472 ^k > 33 ^k	= 68° @BSE-1 1	68/mis = 22.64	
= 115^{k} @B3E-7 $115/M = -32.9^{k}$ = 320008500 STROUG-THE HULL (* 2052.5 DUTO 3" MADU $DF/SP \ ACL = 6.765^{k} @ C_{D} = 1.6$ $DF/SP \ PRP = 6.76^{k} \times 3.37 \times 1.5 \div 1.6 \pm 21^{k}$ (2) HDW 8 × SDS7.5 EXP CAP = 472^{k} > 33^{k}			
 SIMPSON ETROLO-REE HOULEY DOLLS DATE 3" MAN DEF/SP KEL = 6.76⁵ × 3.37×1.5÷1.6 = 21^k (2) HOWE×SDS7.5 EXP CAP + 472^k > 33^k 	= 115h @BSE-7 113	5/m p = 32.9"	
 > 3.DMPSQU ETROLE-THE HOU (* DST.S DATO 3" MAN DF/SP ACL = 6.76^L × 3.37 × 1.5÷1.6 = 21^L (2) HDW 8 × SDS 7.5 EXP CAP = 472^L > 33^{-T} 			
* Some saw etter to the form			
$pF/SP \ AEL = 6.765^{\pm} \ @ \ C_{p} = 1.6$ $DF/SP \ exP = 6.76^{h} \times 3.32 \times 1.5 \pm 1.6 = 21^{h}$ (2) HDW8 × SDS7.5 EXP CAP = 472^{h} > 33^{h}	> SION PSON STRONG-DEE HOUS	* SDS2.5 JUTO 3" MLA	0
$bF/sP + kE = 6.76^{h} \times 3.37 \times 1.5 \pm 1.6 = 21^{h}$ (2) HDW 6 × SDS 7.5 EKP CAP = 472^{h} > 33 ⁴ (2) HDW 6 × SDS 7.5 EKP CAP = 472^{h} > 33 ⁴	4		
$DF/SP = 0.76^{h} \times 3.37 \times 1.5 \div 1.6 = 21^{h}$ (2) HDW 6 × SDS 7.5 EXP CAP = 472 ^h > 33 ^h	DF/SP ALL = 61765°	@ Cp=1.6	
$DF/SP + kR = 6.76 \times 3.37 \times 1.3 = 1.6 = 21$ (2) HDW 6 × SDS 7.5 EXP CAP = 472 ⁴ > 33 ⁴		· · · · · · h	
(2) HDW 8 x SDS 7.5 EXP CAP + 424 > 334	$DF/SP \neq RP = 6.76 \times 3.$	37 + 1-3 - 1.6 = 21	
(2) HDM 8 × 202 2.2 EXP CAP + 424 > 334			
	(2) HOW & × SDS 7.5 EXP CH	P - 424 > 334	

Subject:	Shear Wall Hold Down Load	Job Number:	B7901001.00	Date:	04/24/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.4
		Checked By:		Page	

Wall Heights			Wall Weight
H 2nd-Roof	11 ft	Ext	18.1 psf
H 1st-2nd	10 ft	Int	10 psf

2nd to Roof -North South									BSE-1E			BSE-2E		
Parallel grid	Wall Seg #	Wall length	Trib Width	wFloor	Wall Type	Wall Above	Weight Wall	V Wall	Hold Down Wall	Hold Down Total	V Wall	Hold Down Wall	Hold Down Total	
		ft	ft	klf			kips	kips	kips	kips	kips	kips	kips	
1	Α	9.5	0	0.0	Ext	No	1.90	0.0	-1	-1	0.0	-1	-1	
1	В	15.9	0	0.0	Ext	No	3.17	60.6	40	40	128.5	87	87	
				0.0										
2	A	4	0	0.0	Ext	No	0.80	0.0	0	0	0.0	C	0	
2	В	5.1	12	0.4	Ext	No	1.02	17.3	36	36	36.7	78	78	
2	C	6.9	12	0.4	Ext	No	1.38	23.4	35	35	49.7	77	77	
2	D	7.3	12	0.4	Ext	No	1.46	24.8	35	35	52.6	77	77	
2	E	4.7	12	0.4	Ext	No	0.94	16.0	36	36	33.9	78	78	
				0.0										
3	A	14.7	1	0.0	Int	No	1.62	65.6	48	48	139.3	103	103	
				0.0										
4	A	6.25	12	0.4	Ext	No	1.25	0.0	-2	-2	0.0	-2	-2	
4	В	14.1	12	0.4	Ext	No	2.81	47.4	33	33	100.6	74	74	
4	C	4.66	12	0.4	Ext	No	0.93	0.0	-1	-1	0.0	-1	-1	
	•				•		•		Max	48	kips	Max	103 kip	

2nd to Roof - East West									BSE-1E			BSE-2E		
Parallel grid	Wall Seg #	Wall length	Trib Width	wFloor	Wall Type	Wall Above	Weight Wall	V Wall	Hold Down Wall	Hold Down Total	V Wall	Hold Down Wall	Hold Down Total	
		ft	ft	klf			kips	kips	lbs	lbs	kips	lbs	lbs	
A	1	3.4	15	0.5	Ext	No	0.68	16.9	53	53	35.9	115	115	
A	2	3.7	15	0.5	Ext	No	0.74	18.4	53	18	39.1	115	18	
A	3	3.3	15	0.5	Ext	No	0.66	16.4	53	16	34.8	115	16	
A	4	6.4	15	0.5	Ext	No	1.28	0.0	-2	0	0.0	-2	0	
В	1	7.3	1	0.0	Int	No	0.80	0.0	-1	0	0.0	-1	0	
В	2	19.3	1	0.0	Int	No	2.12	68.4	38	68	145.2	81	68	
C	1	5	15	0.5	Ext	No	1.00	20.8	44	21	56.9	123	21	
C	2	5.6	15	0.5	Ext	No	1.12	23.3	44	23	63.8	123	23	
C	3	5.8	15	0.5	Ext	No	1.16	24.1	44	24	66.1	123	24	
С	4	5.7	15	0.5	Ext	No	1.14	23.7	44	24	64.9	123	24	
D	1	10.2	0	0.0	Ext	No	2.04	22.8	24	23	48.4	51	23	
D	2	10.4	0	0.0	Ext	No	2.08	23.2	24	23	49.3	51	23	
									Max	68	kips	Max	115 kip	

Subject:	Shear Wall Hold Down Load	Job Number:	B7901001.00	Date:	04/24/17
Job:	UCSF Alumni House	By:	RMG	Section:	5.4
		Checked By:		Page	

st to 2nd - Nor	th South								BSE-1E			BSE-2E	
Parallel grid	Wall Seg #	Wall length	Trib Width	wFloor	Wall Type	Wall Above	Weight Wall	V Wall	Hold Down Wall	Hold Down Total	V Wall	Hold Down Wall	Hold Down Total
		ft	ft	klf			kips	kips	lbs	lbs	kips	lbs	lbs
1	А	8.5	0	0.0	Ext	No	1.54	40.3	51	40	85.6	110	40
1	В	5.5	0	0.0	Ext	Yes (1-B)	1.00	26.1	52	66	0.0	C	154
1	С	5.5	0	0.0	Ext	Yes (1-B)	1.00	26.1	52	66	52.5	104	154
2	А	9.1	0	0.0	Int	No	0.91	40.9	49	41	86.8	104	41
2	В	4.3	12	0.3	Ext	Yes (2-B)	0.78	19.3	48	55	41.0	104	133
2	С	4.9	12	0.3	Ext	No	0.89	22.0	48	22	46.7	104	22
2	D	5.3	12	0.3	Ext	No	0.96	23.8	48	24	0.0	-1	24
2	E	4.0	12	0.3	Ext	Yes (2-E)	0.73	18.0	48	54	37.5	102	132
3	A	12.3	1	0.0	Int	Yes (3-A)	1.23	54.4	48	102	0.0	-1	206
3	В	9.7	1	0.0	Int	No	0.97	42.9	48	43	81.6	92	43
4	А	5.1	12	0.3	Ext	No	0.93	15.4	32	15	42.9	91	15
4	В	4.9	12	0.3	Ext	Yes (4-B)	0.89	14.8	32	47	41.2	91	121
4	C	5.9	12	0.3	Ext	Yes (4-B)	1.07	17.8	32	50	0.0	-1	124
4	D	9	12	0.3	Ext	No	1.63	27.2	31	27	0.0	-2	27
									Max	102	kips	Max	206 k

1st to 2nd - Eas	t West								BSE-1E			BSE-2E	
Parallel grid	Wall Seg #	Wall length	Trib Width	wFloor	Wall Type	Wall Above	Weight Wall	V Wall	Hold Down Wall	Hold Down Total	V Wall	Hold Down Wall	Hold Down Total
		ft	ft	klf			kips	kips	lbs	lbs	kips	lbs	lbs
A	1	5.5	15	0.4	Ext	No	1.00	18.8	36	19	0.0	-2	19
A	2	4.6	15	0.4	Ext	No	0.83	15.7	36	16	0.0	-1	16
A	3	6.9	15	0.4	Ext	Yes - (A-3)	1.25	23.5	36	40	65.2	102	56
A	4	7.75	15	0.4	Ext	No	1.41	0.0	-2	0	0.0	-2	0
A	5	5	15	0.4	Ext	No	0.91	0.0	-1	0	33.1	71	0
A	6	6.6	15	0.4	Ext	No	1.20	22.5	36	23	43.6	71	23
В	1	7.3	1	0.0	Ext	No	1.32	22.7	34	23	68.2	102	23
В	2	23.7	1	0.0	Ext	Yes - (B-2)	4.30	73.8	32	142	221.4	100	211
C	1	5.1	15	0.4	Ext	Yes (C-1)	0.93	22.4	47	43	47.6	101	64
C	2	5.5	15	0.4	Ext	Yes (C-2)	1.00	24.2	47	47	51.4	101	71
C	3	5.3	15	0.4	Ext	Yes (C-3)	0.96	23.3	47	47	0.0	-1	71
C	4	5.4	15	0.4	Ext	Yes (C-4)	0.98	23.8	47	47	50.3	101	71
C	5	11.4	1	0.0	Int	No	1.14	50.2	48	50	0.0	-1	50
						•	-						
D	1	22.6	0	0.0	Ext	Yes (D-2)	4.10	96.6	45	120	0.0	-2	143
							•		Max	142	kips	Max	211 kip

UCSF Alumni House Seismic Study Structural Calculations Package UCSF Alumni House

SECTION 6.0 PRODUCT DATA

LTP4/LTP5/A34/A35

Framing Angles and Plates

The larger LTP5 spans subfloor at the top of the blocking or rim board. The embossments enhance performance.

The LTP4 Lateral Tie Plate transfers shear forces for top plate-to-rim board or blocking connections. Nail holes are spaced to prevent wood splitting for single and double top plate applications. May be installed over plywood sheathing.

The A35 angle's exclusive bending slot allows instant, accurate field bends for all two- and three-way ties. Balanced, completely reversible design permits the A35 to secure a great variety of connections.

Material: LTP4/LTP5 - 20 gauge; all others - 18 gauge

Finish: Galvanized. Some products available in stainless steel or ZMAX[®] coating; see Corrosion Information, pp. 15–18.

Installation:

- Use all specified fasteners; see General Notes
- A35 Bend one time only

Codes: See p. 14 for Code Reference Key Chart

LTP4/LTP5/A34/A35

Framing Angles and Plates (cont.)

These products are available with additional corrosion protection. For more information, see p. 18.

 These products are approved for installation with the Strong-Drive[®] SD Connector screw. See pp. 39–40 for more information.

	Model	Type of	Factorero	Direction	A	DF/SP Illowable Load	ls	A	Code		
	No. Connection		Fastellers	of Load	Floor (100)	Roof (125)	(160)	Floor (100)	Roof (125)	(160)	Ref.
66		1	(0) 0d y 116"	F1	395	485	515	340	415	445	IP1, L5,
207			(0) 00 X 1 72	F2 ⁶	395	455	455	340	390	390	L18, FL
	A34			F ₁	395	485	515	340	415	445	
		1	(8) #9 x 1 ½" SD	F2	395	455	455	340	390	390	127, LJ, FL
				Uplift	240	240	240	170	170	170	170
		2	(0) 8d y 116"	A1, E	295	365	395	255	315	340	
		2	(9) 00 X 1 72	C1	210	210	210	180	180	180	
				A ₂	295	365	380	255	315	325	
20	A 2 E	3	(12) 8d x 11⁄2"	C2	295	365	370	255	315	320	IP1, L5, L18, FL
22	ASO			D	230	230	230	200	200	200	
			(10) 9d y 11/"	F1	595	695	695	510	600	600	
		4	(12) OU X 1 72	F2 ⁶	595	670	670	510	575	575	
		5	(12) #6 x 1⁄2" SPAX	F ₁	420	420	420	360	360	360	170
			(10) 0-1 - 11/1	G	580	670	670	500	570	575	IP1, L5,
	LIP4	0	(12) 80 X 1 ½"	Н	580	600	600	500	515	515	L18, FL
		7	(10) 9d y 11/"	G	580	620	620	500	535	535	IP1,
	LIPO		(12) 80 X 1 ½	Н	545	545	545	470	470	470	L18, FL

1. Allowable loads are for one angle. When angles are installed on each side of the joist, the minimum joist thickness is 3".

2. Some illustrations show connections that could cause cross-grain tension or bending of the wood during loading

if not reinforced sufficiently. In this case, mechanical reinforcement should be considered.

3. LTP4 can be installed over %" wood structural panel sheathing with 8d x 11/2" nails and achieve 0.72 of the listed load,

or over ½" and achieve 0.64 of the listed load. 8d commons will achieve 100% load. 4. LTP4 satisfies the IRC continuously sheathed portal frame (CS-PF) framing anchor requirements when installed over raised

wood floor framing per Figure R602.10.6.4.

5. The LTP5 may be installed over wood structural panel sheathing up to ½" thick using 8d x 1½" nails with no reduction in load.

6. Connectors are required on both sides to achieve F_2 loads in both directions.

7. Fasteners: 8d x 1 ½" = 0.131" dia. x 1½" long; SPAX #6 x ½" = 0.138" dia. x ½" long. See pp. 26–27 for other nail sizes and information.

C-C-2017 @ 2017 SIMPSON STRONG-TIE COMPANY INC.

HDB/HD

Holdowns

Simpson Strong-Tie offers a wide variety of bolted holdowns offering low-deflection performance for a range of load requirements.

The HD3B is a light-duty holdown designed for use in shearwalls and braced-wall panels, as well as other lateral applications.

The HD5B, HD7B and HD9B bolted holdowns incorporate the proven design of our HDQ8 SDS-style holdown and feature a unique seat design which greatly minimizes deflection under load. HDB holdowns are self-jigging, ensuring that the code-required minimum of seven bolt diameters from the end of the post is met. They can be installed directly on the sill plate or raised above it and are suitable for back-to-back applications where eccentricity is a concern. HDBs are designed to provide loads for intermediate-load-range shearwalls, braced-wall panels and lateral applications.

HD holdowns offer the highest allowable loads, providing high capacity for both vertical and horizontal applications. The HD12 and HD19 are self-jigging, ensuring that the code-required minimum of seven bolt diameters from the end of the post is met. They can be installed back-to-back when eccentricity is an issue.

Material: See table

Finish: HD3B/HD5B/HD7B/HD9B — Galvanized; HD — Simpson Strong-Tie[®] gray paint; HDG available. For stainless steel options, see L-C-SSHD at **strongtie.com**.

Installation: • See General Notes on pp. 75–76

- Bolt holes shall be a minimum of $\frac{1}{22}$ to a maximum of $\frac{1}{16}$ larger than the bolt diameter (per 2015 NDS, section 12.1.3.2)
- Stud bolts should be snugly tightened with standard cut washers between the wood and nut (BPs are required in the City and County of Los Angeles)
- HD and HDB holdowns are self-jigging and will ensure minimum bolt end distance when installed flush with the sill plate
- Standard cut washer is required under the anchor nut for HD12 with 1" anchor and HD19 with 11/4" anchors

Codes: See p. 14 for Code Reference Key Chart

SB

HD19 (HD12 similar)

Vertical HD19 Installation

Vertical HD3B Installation

Holdowns and Tension Ties

HDB/HD

Simpson Pa Strong-

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 18.

		Mat	erial			Dime	ensions	; (in.)			Faste	eners	Minimum	Allowable Te	ension Loads	Deflection	
	Model No.	Base (in.)	Body (ga.)	НВ	SB	w	н	В	ଜ	S0	Anchor Dia.	Stud Bolts	Member Thickness (in.)	(16 DF/SP	50) SPF/HF	at Highest Allowable Load	Code Ref.
													11/2	1,895	1,610	0.156	
			10	42/	01/		05/	01/	15/	2/		(0) 5/	21⁄2	2,525	2,145	0.169	
	прзв	_	12	4%4	2 1/2	272	078	2 74	1 %16	6 % % (2	(2) %8	3	3,130	3,050	0.120		
													31⁄2	3,130	3,050	0.120	
													1½	2,405	2,070	0.153	
		340	10	51/	2	214	034	214	11/.	2	54 (2) 37 21/2 3,750	3,750	3,190	0.129			
	прор	716		J 74	3	272	978	2 72	1 74		78	(2) %4	3	4,505	3,785	0.156	
													31⁄2	4,935	4,195	0.150	
													3	6,645	5,650	0.142	
	HD7B	3⁄16	10	5¼	3	21⁄2	12%	21⁄2	11⁄4	2	7⁄8	(3) ¾	31⁄2	7,310	6,215	0.154	
													41⁄2	7,345	6,245	0.155	
													31⁄2	7,740	6,580	0.159	
	HD9B	3/6	7	61/6	316	276	1/	21/6	114	23/6	7/0	(3) 7/2	41⁄2	9,920	8,435	0.178	IP3,
		78	<i>'</i>	078	572	2.78	14	272	174	278	78	(3) 78	5½	9,920	8,430	0.178	FL, L21
													71⁄4	10,035	8,530	0.179	
													31⁄2	11,350	9,215	0.171	
											1	(4) 1	41⁄2	12,665	10,765	0.171	
													51⁄2 x 51⁄2	14,220	12,085	0.162	
	HD12	3⁄/8	3	7	4	31⁄2	205⁄16	41⁄4	21⁄8	35⁄8			31⁄2	11,775	9,215	0.171	
											116	(1) 1	41⁄2	13,335	11,055	0.177	
											178	(4) 1	71⁄4	15,435	13,120	0.194	
													5½ x 5½	15,510	12,690	0.162	
											116	(5) 1	71⁄4	16,735	14,225	0.191	
		3/6	3	7	4	21/	241/	414	216	25/	178	(0) 1	5½ x 5½	16,775	12,690	0.200	
	פוטח	78	5	/	4	372	2472	474	2 78	378	11/.	(5) 1	71⁄4	19,360	15,270	0.180	
											1 74	(5) 1	5½ x 5½	19,070	16,210	0.137	

1. To achieve published loads, machine bolts shall be installed with the nut on the opposite side of the holdown. If reversed, the Designer shall reduce the allowable loads shown per NDS requirements when bolt threads are in the shear plane.

2. Lag screws will not develop the listed loads.

3. HD19 with 11/4" anchor rod requires No.1 or better post to achieve published loads.

HDU/DTT

Holdowns

This product is preferable to similar connectors because of a) easier installation, b) higher loads, c) lower installed cost, or a combination of these features.

HDU holdowns are pre-deflected during the manufacturing process, virtually eliminating deflection under load due to material stretch. They use Simpson Strong-Tie® Strong-Drive® SDS Heavy-Duty Connector screws which install easily, reduce fastener slip and provide a greater net section when compared to bolts.

The DTT tension ties are designed for lighter-duty holdown applications on single 2x posts. The DTT1Z is installed with nails or Simpson Strong-Tie Strong-Drive SD Connector screws and the DTT2Z installs easily with the Strong-Drive SDS Heavy-Duty Connector screws (included). The DTT1Z holdowns have been tested for use in designed shearwalls and prescriptive braced wall panels as well as prescriptive wood-deck applications (see p. 337 for deck applications).

For more information on holdown options, contact Simpson Strong-Tie.

HDU Special Features:

- · Holdown designs virtually eliminate deflection due to material stretch
- Uses Strong-Drive SDS Heavy-Duty Connector screws which install easily, reduce fastener slip, and provide a greater net section area of the post compared to bolts
- Strong-Drive SDS Heavy-Duty Connector screws are supplied with the holdowns to ensure proper fasteners are used
- No stud bolts to countersink at openings

Material: See table

Finish: HDU - Galvanized; DTT1Z and DTT2Z - ZMAX® coating; DTT2SS - stainless steel

Installation:

- See General Notes on pp. 75-76
- The HDU requires no additional washer, the DTT requires a standard-cut washer (included with DTT2Z) be installed between the nut and the seat
- Strong-Drive SDS Heavy-Duty Connector screws install best with a low-speed high-torque drill with a %" hex-head driver

Codes: See p. 14 for Code Reference Key Chart

71/8"

Holdowns and Tension Ties

HDU/DTT

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 18.

	Madal			Di	mensio (in.)	ns			Fasteners	Minimum Wood	All	Codo		
	No.	Ga.	w	н	В	ଜ	S0	Anchor Bolt Dia. (in.)	Post Fasteners	Member Thickness (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.
									(6) SD #9 x 1 ½"		840	840	0.170	
	DTT1Z	14	1½	71⁄8	17⁄16	3⁄4	3⁄16	3⁄8	(6) 10d x 11/2"	11⁄2	910	640	0.167	IP2, L19, FL
									(8) 10d x 11⁄2"		910	850	0.167	
	DTT27								(8) ¼" x 1½" SDS	1½	1,825	1,800	0.105	
•••	DTTZZ	14	31⁄4	6 ¹⁵ ⁄16	15⁄8	¹³ ⁄16	3⁄16	1⁄2	(8) 1⁄4" x 1 1⁄2" SDS	3	2,145	1,835	0.128	
SS	DTT2Z-SDS2.5								(8) 1⁄4" x 21⁄2" SDS	3	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	8 ¹¹ ⁄16	31⁄4	1 5⁄16	13⁄8	5⁄8	(6) 1⁄4" x 21⁄2" SDS	3	3,075	2,215	0.088	
	HDU4-SDS2.5	14	3	1015/16	31⁄4	1 5⁄16	13⁄8	5⁄8	(10) 1⁄4" x 21⁄2" SDS	3	4,565	3,285	0.114	
	HDU5-SDS2.5	14	3	13¾6	31⁄4	1 %16	13⁄8	5⁄8	(14) ¼" x 2½" SDS	3	5,645	4,065	0.115	16, L8, FL
										3	6,765	4,870	0.110	
	HDU8-SDS2.5	10	3	16%	31⁄2	1 3⁄8	1½	7⁄8	(20) ¼" x 2½" SDS	31⁄2	6,970	5,020	0.116	
										41⁄2	7,870	5,665	0.113	
		10	2	001/	214	134	114	1	(20) 1/4 v 21/4 CDC	51⁄2	9,335	6,865	0.137	
	10011-3032.5	10	3	2274	3 72	1 7/8	1 72	I	(30) 74 X Z 72 3D3	71⁄4	11,175	8,045	0.137	
										4x6 ^{3,4}	10,770	7,755	0.122	170
	HDU14-SDS2.5	7	3	2511/16	31⁄2	1 %16	1%16	1	(36) ¼" x 2½" SDS	71⁄43	14,390	10,435	0.177	16,
										51/2 ^{2,3}	14,445	10,350	0.172	L8, FL

1. See pp. 75–76 for Holdown and Tension Tie General Notes.

2. Noted HDU14 allowable loads are based on a 51/2" wide post (6x6 min.).

3. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).

4. Loads are applicable to installation on either narrow or wide face of post.

Simpson

Strong-I

Pa