

Rating form completed by: **MAFFEI STRUCTURAL ENGINEERING**

maffei-structure.com Rob Ward, Joe Maffei, Noelle Yuen, Sage Shamsai

Text in green is to be part of UCSF building database and may be part of UCOP database

UCSF building seismic ratings

1701 Divisadero, MOB 2

CAAN #2036 1701 Divisadero St., San Francisco, CA 94115 UCSF Campus: Mt. Zion

DATE: 2020-06-26

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	V	Based on drawing review and Tier 1 evaluation ¹ plus additional calculations.
Rating basis	Tier 1	ASCE 41-17
Date of rating	2019	
Recommended UCSF priority category for retrofit	Priority B	Priority A=Retrofit ASAP Priority B=Retrofit at next permit application for modification
Ballpark total construction cost to retrofit to IV rating ²	High (\$200/sf to \$400/sf)	Based on overall square footage of building, including parking levels.
Is 2018-2019 rating required by UCOP?	Yes	Building previously rated IV but does not have a fully documented previous review
Further evaluation recommended?	Tier 2	

¹ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

² Per Section 3.A.4.i of the Seismic Program Guidebook, the cost includes all construction cost necessitated by the seismic retrofit, including restoration of finishes and any triggered work on utilities or accessibility. It does not include soft costs such as design fees or campus costs. The cost is in 2019 dollars.

Building information used in this evaluation

- Structural drawings by Steven Tipping + Associates, "1701 Divisadero Medical Office Building," as-builts, 1996-08-15 (14 sheets)
- Architectural drawings by Kaplan McLaughlin Diaz, "1701 Divisadero Medical Office Building," as-builts, 1996-08-01 (17 sheets)
- Project documents from the records of Tipping Structural Engineers, listed on page 12 of this report.

Additional building information known to exist

• Structural steel fabrication drawings by Gayle Manufacturing

Scope for completing this form

We reviewed the as-built building drawings and carried out an ASCE 41-17 Tier 1 evaluation. We walked through the building on 20 November 2020 to confirm that the building generally matches the original drawings and to check for non-structural life-safety issues. We viewed some original project correspondence files at the office of Tipping Structural Engineers.

Brief description of structure

Mt. Zion Medical Office Building (MOB) 2 is a rectangular, low-slope roof building that provides space for clinics, offices, and a pathology laboratory. It has an overall floor area of 120,500 square feet, divided approximately equally between above-ground office space on 5 levels, and below-ground parking on 4 levels. The parking levels are each approximately 113'x136' in plan and abut the UCSF 2420 Sutter Street parking structure (CAAN #3062) to the west. There is access to the neighboring parking structure at the B1 level. Above ground, the building steps back 25' on the west side so that floors 1 through 3 are approximately 88'x136' in plan. Floors 1 through 3 are adjacent to a 30' tall building to the north where there is a 6" seismic separation. Floors 4 and 5 step back on the north side and are approximately 88' x 95' in plan. The upper roof supports 2 air handler units, enclosed along with stair and elevator equipment penthouses by a screen wall. The building's exterior is EIFS on steel studs. The overall height of the building is approximately 68' to the top of the 3'-6" parapet.

Steven Tipping + Associates structural engineers and the architectural firm of Kaplan McLaughlin Diaz designed the building in 1995. Plant Construction built the shell for Pacific Union Development in 1996.

<u>Identification of levels</u>: The main entry to the building is at ground level on the 1st floor. The remaining above-ground levels are floors 2 through 5. Below ground parking is on levels B1 through B4, B4 being the lowest level.

Structural system for vertical (gravity) load: Above the 1st floor, the typical floor and roof system is 2" deep metal decking with 2½" of lightweight concrete fill, supported on steel wide-flange composite beams spaced at up to 8'-9" on center, spanning north-south to steel wide-flange composite girders spaced at up 27'-6" on center, spanning to W10 or W14 columns at up 26'-4" on center. The 1st floor and floors B1 through B3 are primarily 9" thick 2-way concrete slabs supported by perimeter concrete walls and by 20" and 22" diameter concrete columns with drop panels.

<u>Foundation system</u>: The building has a 2' thick concrete mat slab foundation, the base of which is approximately 40' below adjacent grade. The mat slab is held down with an array of 1%" diameter by 35' long high-strength threaded bar tie-downs grouted in 12" diameter holes.

<u>Structural system for lateral forces:</u> Floors 2 through 5 and the upper roof are supported laterally by welded steel moment-resisting frames at the perimeter on all 4 sides of the building. There is a 5th 5-story moment frame oriented east-west at grid line 3, which is the north façade at the 4th and 5th floors. (See figure 2.) Lateral forces are transmitted to the moment frames by the concrete-filled metal decking at each level acting as a diaphragm.

Perimeter concrete walls and 2 interior concrete walls provide lateral support for the below-grade parking structure. The perimeter walls are 12" thick at level B1, and 14" thick at levels B2, B3, and B4. The interior concrete walls, which are on either side of the access ramps, are 8" thick.

Building condition

The building appears in generally good condition, and UCSF personnel noted that there are no current maintenance issues. There is rust on some rooftop mechanical equipment. There is evidence of moisture intrusion through the perimeter concrete walls at level B4.

Brief description of seismic deficiencies and expected seismic performance including mechanism of nonlinear response and structural behavior modes

Identified seismic deficiencies of the building include the following:

Structural feature or potential deficiency	Finding/notes
Welded moment connections	The steel moment-resisting frame connections use welded beam flange cover plates as shown in Figure 3 below. Because of the cover plates, this connection configuration is significantly stiffer and stronger than a typical pre-Northridge welded steel moment frame where the ends of the beam flanges are unreinforced. It is likely that the beam flange reinforcement will protect the connection by forcing flexural yielding in the beams to occur away from the welded connections. This connection configuration is different, however, from the prequalified welded flange plate connection in FEMA 350 (2000) and there is no prequalified welded flange plate connection compared to the connection types that are prequalified. We expect that the ductility capacity of the connections is substantially greater than that of typical pre-Northridge connections, however there is still a potential for connection fracture under earthquake action.
Moment frame connection panel zone strength	The panel zones in 31 of 42 connections that were checked in this Tier 1 evaluation do not have enough capacity to resist 80% of the maximum shear demand that can placed on them by adjacent beams. Demand to capacity ratios were as high as 3.0. Panel zone yielding during a strong earthquake would lead to softening of the moment-resisting frames, increasing interstory drifts and increasing the likelihood of damage, e.g., to cladding and partitions.
Inter-story drift	Inter-story drift ratios exceed the Tier 1 drift check 3% limit in the lower stories in the north- south direction. Increased inter-story drift would lead to increased building damage.
1 st floor offset	Below the 1 st floor, lateral resistance is provided by concrete walls, primarily at the perimeter of the parking areas at lines 1, 7, A, and F. The steel moment-resisting frame above the 1st floor on Line B (the west façade of the building) is in-line with an 8" thick concrete wall below that is of insufficient size to resist shear demands that could be delivered by the moment frame. The steel moment-resisting frame on Line 3 does not have a wall in line with it in the parking levels below. Shears from the Line 7 and Line 3 moment frames therefore are to be carried through the 1st floor slab to the below-grade perimeter walls. Diaphragm stresses at the 1 st floor have not been evaluated as part of this Tier 1 study. Furthermore, the offset of the above-ground stories with respect to the parking floors below-ground results in plan torsion that effects wall shear demands. The Tier 1 quick check of wall shears indicates that seismic demand-capacity ratios are low, however, (0.2 to 0.5) indicating that this torsion effect will not adversely affect the building's seismic performance.
Site class D spectral shape	Per footnote 4, the earthquake demands are based on an F_v factor that does not include the requirements of Section 11.4.8-3 of ASCE 7-16. If such requirements were to be included, for this building with T =0.99 seconds (using ASCE 41-17 equation 4-4 based on building height), demands would increase by a factor of about 1.5. The Quick Check of inter-story drift ratios would then be noncompliant for all stories and directions, with values exceeding 7% at one location.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	N	Openings at shear walls (concrete or masonry)	N
Load path	N	Liquefaction	N
Adjacent buildings	N	Slope failure	N
Weak story	N	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	N	URM wall height-to-thickness ratio	N
Torsion	N	URM parapets or cornices	N
Mass – vertical irregularity	N	URM chimney	N
Cripple walls	N	Heavy partitions braced by ceilings	N
Wood sills (bolting)	N	Appendages	N
Diaphragm continuity	N		

Summary of review of non-structural life-safety concerns, including at exit routes ³

We did not identify any non-structural life-safety concerns during our walkthrough. There is a natural gas-fueled water heater at the upper roof level with seismic restraints, and there is an earthquake-activated automatic gas shutoff device at the main shutoff.

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None observed	Unrestrained hazardous materials storage	None observed
Heavy masonry or stone veneer above exit ways and public access areas [Or older or vulnerable precast concrete cladding]	None observed	Masonry chimneys	None observed
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	None observed	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	None observed

Discussion of rating

We rate the building as V (poor). There is a case to be made that the building could be IV (fair), but it would probably take a nonlinear dynamic analysis to convincingly demonstrate this. Beneficial features of the structure include the cover-plated beam connections that should have substantially more ductility than typical pre-Northridge connections. Column splices all use full-penetration welds (even for gravity columns); The structure passes the Tier 1 strong-column-weak-beam checks and, more importantly, our approximate assessment using plastic analysis shows that story mechanism formation is unlikely. Our evaluation found acceptable wall and moment-frame column stresses. The building's rectangular configuration and balanced moment frame and shear wall locations should contribute to good collapse-prevention seismic performance. Conversely, panel zones are weak, and the frame does not meet the story drift requirements of Tier 1.

³ For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of the type and location of potential non-structural hazards.

Further evaluation recommended?	Yes
Likelihood of showing better rating	Unlikely Possible Good chance
Likelihood of showing worse rating	Unlikely Possible Good chance
Evaluation needed to clarify the necessary retrofit scope?	Yes, it could be used to determine how much connection retrofitting or other strengthening is needed to meet IV.
Discussion of priority assignment	We suggest Priority B because retrofit would be disruptive and best accomplished along with remodeling or other work.

Recommendations for further evaluation or retrofit

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (Lizundia, Moore, Phipps) reviewed the presentation of this evaluation on 8 January 2019, and they reviewed this report. The SRC is unanimous that a Seismic Performance Level Rating of V is appropriate.

SRC members had concerns about the column base plates (Figure 4) that do not provide full fixity for the columns. SRC members also felt that that the frame was light and were concerned about the weak panel zones and uncertainty about how effective the cover-plated connections would be.

Additional building data	Entry	Notes
Latitude	37.784567	
Longitude	- 122.440416	
Are there other structures besides this one under the same CAAN#	No	
Number of stories above lowest perimeter grade	5	
Number of stories (basements) below lowest perimeter grade	4	Parking levels B1 through B4
Building occupiable area (OGSF)	120,515	From UCOP spreadsheet
Risk Category per 2016 CBC 1604.5	П	
Building structural height, h _n	65 ft	Structural height defined per ASCE 7-16 Section 11.2
Estimated fundamental period	0.99 sec	Estimated using ASCE 41-17 equation 4-4
Site data		
975 yr hazard parameters S_s , S_1	1.433, 0.558	
Site class	D	
Site class basis	Study	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Site parameters F_a , F_v	1.0, 1.742 ⁴	
Ground motion parameters S _{cs} , S _{c1}	1.433, 0.972	
S_a at building period	0.985	
Site V _{s30}	308 m/s	
V _{s30} basis	Estimated	UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)
Liquefaction potential	No	

 $^{^{4}}$ F_{V} factor used does not include the requirements of Section 11.4.8-3 of ASCE 7-16 that are applicable to Site Class D, and which per Exception 2 would result in an effective F_{V} factor 1.5 times larger. At the UCSF Mt. Zion campus this affects structures with T > 0.68 seconds.

Liquefaction assessment basis Study		UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)				
Landslide potential	No					
Landslide assessment basis Stud		UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)				
Active fault-rupture identified at site?	No					
Fault rupture assessment basis Study		UCSF Group 3 Buildings – Tier 1 Geotechnical Assessment, Egan (2019)				
Site-specific ground motion study?	No					
Applicable code						
Applicable code or approx. date of original construction	Built: 1996 Code: 1991 UBC	Code identified on Sheet S1.1				
Applicable code for partial retrofit	None	No partial retrofit known				
Applicable code for full retrofit	None	No full retrofit known				
Model building data						
Model building data Model building type	C2 Concrete shea S1 Steel moment	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground)				
Model building data Model building type FEMA P-154 score	C2 Concrete shea S1 Steel moment 0.8	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground)				
Model building data Model building type FEMA P-154 score Previous ratings	C2 Concrete shea S1 Steel moment 0.8	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground)				
Model building data Model building type FEMA P-154 score Previous ratings Most recent rating	C2 Concrete shea S1 Steel moment 0.8 IV	ar walls C2 at levels - (below ground) : frame S1 at levels - (above ground) 2013 report				
Model building data Model building type FEMA P-154 score Previous ratings Most recent rating Date of most recent rating	C2 Concrete shea S1 Steel moment 0.8 IV 2013-10-07	ar walls C2 at levels - (below ground) : frame S1 at levels - (above ground) 2013 report Basis: qualitative assessment based on document review				
Model building data Model building type FEMA P-154 score Previous ratings Most recent rating Date of most recent rating 2 nd most recent rating	C2 Concrete shea S1 Steel moment 0.8 IV 2013-10-07	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground) 2013 report Basis: qualitative assessment based on document review				
Model building data Model building type FEMA P-154 score Previous ratings Most recent rating Date of most recent rating 2 nd most recent rating Date of 2 nd most recent rating	C2 Concrete shea S1 Steel moment 0.8 IV 2013-10-07 -	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground) 2013 report Basis: qualitative assessment based on document review				
Model building data Model building type FEMA P-154 score Previous ratings Most recent rating Date of most recent rating 2 nd most recent rating Date of 2 nd most recent rating 3 rd most recent rating	C2 Concrete shea S1 Steel moment 0.8 IV 2013-10-07 - - -	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground) 2013 report Basis: qualitative assessment based on document review				
Model building dataModel building typeFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent rating2nd most recent ratingDate of 2nd most recent rating3rd most recent ratingDate of 3rd most recent ratingDate of 3rd most recent rating	C2 Concrete shea S1 Steel moment 0.8 IV 2013-10-07 - - - - -	ar walls C2 at levels - (below ground) : frame S1 at levels - (above ground) 2013 report Basis: qualitative assessment based on document review				
Model building dataModel building typeFEMA P-154 scorePrevious ratingsMost recent ratingDate of most recent rating2nd most recent ratingDate of 2nd most recent ratingDate of 3rd most recent ratingDate of 3rd most recent ratingAppendices	C2 Concrete shea S1 Steel moment 0.8 IV 2013-10-07 - - - - -	ar walls C2 at levels - (below ground) frame S1 at levels - (above ground) 2013 report Basis: qualitative assessment based on document review				

MAFFEI STRUCTURAL ENGINEERING maffei-structure.com

Figure 1: Concrete wall location plan at levels B1 through B4

MAFFEI STRUCTURAL ENGINEERING

maffei-structure.com

Figure 2: Moment frame location plan

MAFFEI STRUCTURAL ENGINEERING

maffei-structure.com

Figure 4: Moment column connection details

Figure 6: East elevation

Date	Item	Notes
1994-01-17	Northridge, CA EQ	
1994-09-XX	SEAOC/AISC/ICBO emergency code change to	"2211.7.1.2 Connection Strengthabilty to sustain
	1994 UBC	inelastic rotation considering steel overstrength
		and strain hardening"
1994-09-XX	Steel Moment Frame Advisory No. 1	SAC collections of papers and topical reports
1994-10-XX	Steel Moment Frame Advisory No. 2	prepared by practicing engineers, building officials,
		industry groups, and researchers
1995-01-17	Kobe, Japan—Great Hanshin EQ	
1995-02-01	Steel Moment Frame Advisory No. 3	SAC 95-01
1995-04-14	Permit Issued	
1995-07-31	Bid & Permit set issued	
1995-08-XX	SAC Interim Guidelines	SAC 95-02 / FEMA 267
1995-08-14	Peer Review Comments 100% CD submittal	
1995-08-17	Bid Addendum A	
1995-08-29	Bid Addendum B	
1995-09-27	Letter Degenkolb to UCSF	1. SMRF Base plate demands
	PEER REVIEW OF STRUCTURAL DESIGN 1701	2. Panel zone rigidity
		3. SMRF conn per SAC Interim Guidelines
		4. Future roof deck
1005 10 02		5. Construction dewatering
1995-10-02	Letter BUDCe to Tipping	Po Dogonkolh backchack to Addonda A & P
1995-10-02		Re Degenkolb backcheck to Addenda A & B
	STRUCTURAL UPGRADES	
1995-10-02		Re Degenkolb backcheck to Addenda A & B
1995-10-12	S.F. Bay Area Seminar on SAC Interim	
	Guideleines	
1995-10-19	Tipping letter to Pacific Union	
	Response to 1995-09-27 Degenkolb comments	
1995-10-18	John Wolfe calcs	
	moment conn calcs per Aug 95 SAC Interim	
	Guidelines	
1995-11-29	Shop WPS submittal	+ Transmittals Plant $ ightarrow$ Tipping $ ightarrow$ AME
1995-12-15	AME review letter of Shop WPS	Mentions charpy V-Notch testing per Interim
		17 01
		Guidelines for bottom flange cover plates
1995-12-19	Shop WPS Revised	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15	Shop WPS Revised Structural final coordination set	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19	Shop WPS Revised Structural final coordination set Field WPS submittal	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19 1996-02-28	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19 1996-02-28	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V-	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28 1996-02-28	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping	Guidelines for bottom flange cover plates w/ Tipping review stamp
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28 1996-02-28	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping Letter AME to Tipping	Guidelines for bottom flange cover plates w/ Tipping review stamp Approval of WPS
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28 1996-03-04 1996-03-05 1996-03-05	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping Letter AME to Tipping Transmittal of Field WPS	Guidelines for bottom flange cover plates w/ Tipping review stamp Approval of WPS
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28 1996-03-04 1996-03-05 1996-03-05	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping Letter AME to Tipping Transmittal of Field WPS Tipping to Plant Construction	Guidelines for bottom flange cover plates w/ Tipping review stamp Approval of WPS
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28 1996-03-04 1996-03-05 1996-03-05 1996-03-05	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping Letter AME to Tipping Transmittal of Field WPS Tipping to Plant Construction As-builts Dependent	Guidelines for bottom flange cover plates w/ Tipping review stamp Approval of WPS
1995-12-19 1996-01-15 1996-02-19 1996-02-28 1996-02-28 1996-03-04 1996-03-05 1996-03-05 1996-08-15 1996-08-29 1996-08-29	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping Letter AME to Tipping Transmittal of Field WPS Tipping to Plant Construction As-builts Permit complete	Guidelines for bottom flange cover plates w/ Tipping review stamp Approval of WPS
1995-12-19 1996-02-19 1996-02-28 1996-02-28 1996-02-28 1996-03-04 1996-03-05 1996-03-05 1996-08-15 1996-08-29 1997-01-XX	Shop WPS Revised Structural final coordination set Field WPS submittal Letter Lincoln Electric to California Erectors re Charpy V-Notch testing Letter Gayle Manufacturing to Plant re Charpy V- Notch testing for moment frame welds Transmittal of revised WPS Plant to Tipping Letter AME to Tipping Transmittal of Field WPS Tipping to Plant Construction As-builts Permit complete SAC Interim Guideleines Advisory Number 1	Guidelines for bottom flange cover plates w/ Tipping review stamp Approval of WPS FEMA 267A (superseded by Advisory No. 2)

Appendix 1: Project timeline with list of documents reviewed at Tipping Structural Engineering

Appendix 2: Story mechanism study

We performed two additional evaluations to learn more about this building's vulnerability to the formation of a story mechanism. (a) We calculated an index based on SEAOC Blue Book recommendations⁵ and (b) we conducted a plastic mechanism analysis, comparing the plastic limit load of a beam mechanism to a story column mechanism. We looked at the potential for story mechanisms below Levels 2 and 5, for seismic forces acting in the building's longitudinal direction. (See Figures A2-1 and A2-2 below.) For both evaluations, we calculated cases with and without consideration of lateral resistance from the gravity columns (those without girder moment connections). We include moment frame columns acting weak-way (out of the plane of the moment frame) along with the gravity columns. With the plastic mechanism analysis, we compared a code-based (inverted triangular) vertical distribution of seismic forces to a uniform distribution.

(a) SEAOC Blue Book index:

The SEAOC Blue Book recommendation for avoidance of a story mechanism is:

$$\frac{\sum M_c}{\sum M_b} \ge 1$$
 where:

 $\sum M_c$ = sum of nominal flexural strengths of all columns framing into underside of the level

 $\sum M_{h}$ = sum of nominal flexural strengths at each end of each beam at the level

To account for the reduction in column moment capacity from axial load, we multiply the plastic moment $(M_p = f_y Z)$ by a factor of 0.8. This factor is based on our evaluation of the axial-moment interaction for a few sample columns, considering an axial load from the load case 1.0D + 0.5E (with *E* representing earthquake forces corresponding to the development of beam moment capacity). This 0.5 factor in this load case approximates that not all the columns will experience maximum earthquake forces simultaneously.

We also account for the weak base plates by using the moment strength of the six-anchor base plate instead of the flexural capacity of the columns at the column base at Level 1.

We used an amplification factor of 1.1 for the moment-frame beams to account for composite floor slabs, and a reduction factor of 0.3 times the flexural strength of the full beam section to estimate the moment capacity at shear tab connections. Therefore, the beam flexural strength is taken as $1.1M_p$ at moment connections and as $0.3M_p$ at shear tab connections. Both these factors are average approximations that consider that a beam framing into one side of a column will be in positive moment (with greater composite contribution) while the beam on the opposite side will be in negative moment (with less composite contribution).

Resulting index values are:

Case	Below Level 2	Below Level 5
Including gravity columns	1.03	1.36
Neglecting gravity columns	0.72	0.86

We believe that the results that include gravity columns are a better representation of the actual behavior

(b) Plastic mechanism analysis:

The criterion for the plastic mechanism analysis is:

$$V_{story\ mech}/V_{beam\ me} \ge 1$$

where:

 $V_{story\ mech}$ = base shear corresponding to the development of a story mechanism $V_{beam\ mech}$ = base shear corresponding to the development of a beam mechanism

⁵ Structural Engineers Association of California, "Recommended Lateral Force Requirements and Commentary" Section C402.5, September 1999

We use the same moment capacity assumptions and methods as in the calculation of the Blue Book Index. A value greater than one for this criterion indicates that a story mechanism is less likely than a beam mechanism to occur.

Resulting values for this criterion are:

Case	Below Level 2	Below Level 5
Code distribution including gravity columns	1.61	2.61
Uniform distribution including gravity columns	1.29	3.57
Code distribution neglecting gravity columns	1.04	1.89
Uniform distribution neglecting gravity columns	0.82	2.59

Conclusions

These evaluations indicate that a story mechanism is unlikely as none of the cases that include gravity columns indicate a likely story mechanism. Also, our results show that the building setback that occurs above Level 4 does not result in a story mechanism vulnerability above the setback.

The analyses above are an approximation of expected behavior, made to estimate the extent to which gravity columns will benefit the structural performance related to story mechanisms. We only assess the performance in the building longitudinal direction, but we observe that the calculation results would be similar in the transverse direction. These approximate analyses assume fully ductile behavior, but in reality, the ductility capacity of the beam moment connections (which have cover plates) is uncertain. The likelihood and effect of connection fracture is uncertain; nonlinear dynamic analysis could provide insight.

Nevertheless, the analyses summarized here show that the gravity columns, plus moment frame columns acting weak-way, provide substantial protection against a story mechanism in the building, at least prior to any potential widespread fracture of connections.

Figure A2-2: Story mechanism below level 5

MAFFEI STRUCTURAL ENGINEERING maffei-structure.com

East and north façades

North façade at 4th & 5th floors / low roof

Covered seismic gap at NW corner of building

West façade, alleyway over B1 parking level, adjacent parking structure to the left

MAFFEI STRUCTURAL ENGINEERING maffei-structure.com

Lobby

Typical examination room

Typical hallway

MAFFEI STRUCTURAL ENGINEERING

maffei-structure.com

Earthquake-activated automatic gas shutoff —

Gas main service shut off – Level B1

Gas-fired domestic water heater - high roof

Gas-fired HVAC boiler – high roof

MAFFEI STRUCTURAL ENGINEERING

maffei-structure.com

Vehicle ramp to Level B1

Connection to 2420 Sutter Street parking structure at Level B1

Level B4 perimeter wall with evidence of moisture intrusion

UC Cam	ipus:	San Francisco		Date:	12/10/2019				
Building CA	AAN:	l: 2036 Auxiliary CAAN:			By Firm:		MSE		
Building Na	ame:	Mt. Zi	on 1701 Divisa	dero, MOB 2		Initials:	RBW	Checked:	JM
Building Addr	ress:	1701 D	ivisadero St., S	San Francisco	D	Page:	1	of	3
	Co	llapse Pre	A vention	SCE 4 [°] Basic (1-17 Configu	iration	Check	list	
LOW SEISI	MIC	ITY							
BUILDING S	YSTE	EMS - GENER	RAL						
					Descriptio	n			
CNCN/AU CCCC	J LO tha (Co Co	AD PATH: The struct t serves to transfer commentary: Sec. A.2	cture contains a the inertial for .1.1. Tier 2: Sec	complete, we ces associate 5.5.4.1.1)	ell-defined loa d with the ma	d path, includir ass of all elem	ng structural nents of the	elements and co building to the	onnections, foundation.
C NC N/A L	J AD 0.2 (Cc Cc	JACENT BUILDING 5% of the height of ommentary: Sec. A.2 omments: The Seis 6" >	S: The clear dist the shorter bui a.1.2. Tier 2: Sec height of the mic gap is 6" .015·32·12" =	ance betweer Iding in low s 5.5.4.1.2) adjacent bu based on fi = 5.8"	n the building b eismicity, 0.5% uilding to the eld observa	eing evaluated % in moderate north is ~ 3; tion and deta	and any adj seismicity, 2 ft per ele ail 5/A8.2.	acent building is and 1.5% in high evation 2/A3.1.	greater than n seismicity.
C NC N/A L C C © C	J ME ford	ZZANINES: Interior ce-resisting elements	mezzanine leve s of the main str	ls are braced ucture. (Comr	independently nentary: Sec.	from the main A.2.1.3. Tier 2:	structure or Sec. 5.4.1.3	are anchored to 3)	the seismic-
BUILDING S	YSTE	EMS - <i>BUILDI</i>	ING CONF	IGURAT	ION				
					Descriptio	n			
C NC N/A L ⊙ C C C	J WE les	EAK STORY: The su s than 80% of the str	m of the shear rength in the adj	strengths of t acent story at	he seismic-for bove. (Comme	ce-resisting sy ntary: Sec. A2	stem in any .2.2. Tier 2:	story in each dir Sec. 5.4.2.1)	ection is not

0	0	0	~	less than 60% of the strength in the adjacent story above. (Commentary, Sec. A2.2.2. The 2. Sec. 5.4.2.1)
				Comments:
с ⊙	NC C	N/A C	U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force- resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2) Comments:

UC Campus:	San Franciso	со	Date:		12/10/2019					
Building CAAN:	2036	Auxiliary CAAN:	By Firm:		MSE					
Building Name:	Mt. Zion 1701 Divisad	lero, MOB 2	Initials:	RBW	Checked:	JM				
Building Address: 1701 Divisadero St., San Francisco Page: 2 of						3				
Co	ASCE 41-17 Collapse Prevention Basic Configuration Checklist									
C NC N/A U C C C C (C)	C NC N/A U • C O C VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3) Comments: There are concrete columns or pilasters below all moment frame columns.									
C NC N/A U GE ⊙ C C C C in a Se C C	EOMETRY: There are no changes in th a story relative to adjacent stories, exc c. 5.4.2.4) comments: In the transverse dire	ne net horizontal dimension cluding one-story penthouse ection, the change from	of the seismic es and mezzar the 1 st floor	-force-resist nines. (Comr to B1 is 1	ing system of mo nentary: Sec. A.2 15'/88.7' = 1.3	ore than 30% 2.2.5. Tier 2: 50				
C NC N/A U M/ C O C me C C	 MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5) Comments: 5th floor level to 4th floor level: 867 kips/561 kips = 1.54 									
C NC N/A U TC C C C C the C 4 s	DRSION: The estimated distance betw e building width in either plan dimension comments: Each story is rectang sides.	veen the story center of ma on. (Commentary: Sec. A.2 gular in plan with match	ass and the story center of rigidity is less than 20% of 2.2.7. Tier 2: Sec. 5.4.2.6) ching lateral load resisting elements on all							

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

	Description
C NC N/A U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2m) under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)
	Comments: Per Egan report
C NC N/A U	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments: Per Egan report

UC Campus:	San Franc		Date:		12/10/2019					
Building CAAN:	ing CAAN: 2036 Auxiliary CAAN: By Firm: MSE									
Building Name:	Mt. Zion 1701 Divisa	Mt. Zion 1701 Divisadero, MOB 2 Initials: RBW Checked: JM					ЈМ			
Building Address:	1701 Divisadero St.,)	Page:	3	of	3				
Co	ASCE 41-17 Collapse Prevention Basic Configuration Checklist									
MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)										
GEOLOGIC SITE HAZARD										

C NC N/A U SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) Comments: per Egan report

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)

FOUNDATION CONFIGURATION

	Description
C NC N/A U	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6S_a$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3)
	Comments: At around level: $87.5'/65.0' = 1.35 > 0.6 \cdot 0.985 = 0.59$
C NC N/A U	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings,
$\circ \circ \circ \circ$	piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4)
	Comments: Foundation is a 2' thick mat slab.

	ι	JC C	ampı	pus: San Francisco Date: 12/10/2019								
	Bui	lding	CAA	N: 203	6	Auxiliary CAAN:		By Firm:		MSE		
	Bu	ilding	Nan	ne: Mt. Z	ion 1701 Divisa	adero, MOB 2	2	Initials:	RBW	Checked:	ЈМ	
	Build	ing A	ddre	ss: 1701 C)ivisadero St.,	San Franciso	:0	Page:	1	of	3	
	Со)Se	Prevention	م Structur	ASCE 4 ral Che	1-17 cklist F	or Build	ling T	ype C2-C	2A	
			loue									
Sei	smi	c-Fo	orce	-Resisting Syst	em							
							Descriptio	on				
C ©	NC C	N/A C	U	COMPLETE FRAMES: carrying system. (Comr Comments:	OMPLETE FRAMES: Steel or concrete frames classified as secondary components form a complete vertical-load- arrying system. (Commentary: Sec. A.3.1.6.1. Tier 2: Sec. 5.5.2.5.1)							
С	NC	N/A	U	REDUNDANCY: The n	EDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary:							
\odot	\mathbf{O}	\odot	\mathbf{O}	Sec. A.3.2.1.1. Tier 2: S	Sec. 5.5.1.1)							
				Comments:								
C ©		N/A	C	SHEAR STRESS CHE Section 4.4.3.3, is less 5.5.3.1.1) Comments: Quick	CK: The shear and the great than the great charter by the great charter by the great charter by the charter by the shear the s	stress in the ter of 100 lb/ are 0.5 or le	concrete shea ′in.² (0.69 MP ess	r walls, calculat a) or 2√f′ _c . (Co	ted using the mmentary:	e Quick Check pi Sec. A.3.2.2.1. T	rocedure of Tier 2: Sec.	
C ©	NC O	N/A	U	REINFORCING STEEL direction and 0.0020 in	.: The ratio of re the horizontal d	einforcing ste lirection. (Con	el area to gro nmentary: Sec	ss concrete are A.3.2.2.2. Tier	a is not les 2: Sec. 5.5.	s than 0.0012 in 3.1.3)	the vertical	
				Comments: per se	ction 2/S3.1	& detail 10/	S3.3					
				wall thickness (in)	Vert. reinf.	%	h h	oriz. Reinf.	%			
				8	#5 @ 12"	.0	032 #	5 @ 12"	.0032	2		
				12	#5 + #4 @	.0 12"	035 #	4 + #4 @ 12"	.0028	3		
				14	#6 + #5 @	.0 .0	045 #	£5 + #5 @ 16"	.0028	3		
Co	nne	ctio	าร									
-			-				Descriptio	n				
C	NC O	N/A ⓒ	U	WALL ANCHORAGE A diaphragms for lateral s dowels, or straps that calculated in the Quick Comments:	T FLEXIBLE D upport are anch are developed Check procedur	DIAPHRAGMS nored for out- into the dia re of Section 4	5: Exterior cor of-plane forces ohragm. Con 1.4.3.7. (Com	ncrete or masor s at each diaphr inections have mentary: Sec. A	ary walls tha agm level w strength to .5.1.1. Tier	at are dependent ith steel anchors, resist the conne 2: Sec. 5.7.1.1)	on flexible reinforcing ection force	

UC Campus:	UC Campus: San Francisco			Date:	12/10/2019			
Building CAAN:	2036	Auxiliary CAAN:		By Firm:	MSE			
Building Name:	Mt. Zion 1701 Divisa	adero, MOB 2		Initials:	RBW	RBW Checked: JM		
Building Address:	1701 Divisadero St.,	San Francisc	D	Page:	2	of	3	
	ANSFER TO SHEAR WALLS: Dommentary: Sec. A.5.2.1. Tier 2: Sec.	ASCE 4 ral Chee hiaphragms ar c. 5.7.2)	1-17 cklist For e connected	or Build	ding Ty	/pe C2-C forces to the s	hear walls.	
C NC N/A U FO C C C C the C C	OUNDATION DOWELS: Wall reinford vertical wall reinforcing directly abo	cement is dowe ve the foundat	eled into the fo ion. (Commen	undation with tary: Sec. A.5.	vertical bars 3.5. Tier 2: S	equal in size and Sec. 5.7.3.4)	d spacing to	

High Seismicity (Complete The Following Items In Addition To The Items For Low And Moderate Seismicity)

Seismic-Force-Resisting System

				Description
C ©	NC C	N/A C	C	DEFLECTION COMPATIBILITY: Secondary components have the shear capacity to develop the flexural strength of the components. (Commentary: Sec. A.3.1.6.2. Tier 2: Sec. 5.5.2.5.2) Comments: See calculations - round concrete columns have sufficient shear capacity.
с ⊙	NC C	N/A C	U	FLAT SLABS: Flat slabs or plates not part of the seismic-force-resisting system have continuous bottom steel through the column joints. (Commentary: Sec. A.3.1.6.3. Tier 2: Sec. 5.5.2.5.3) Comments: Detail 5/S3. 2 calls out #4 @ 18" bottom bars in the 9' wide drop panels, so there would be 7 bars, with the middle bar centered on the column.
C ©		N/A C	U O	COUPLING BEAMS: The ends of both walls to which the coupling beam is attached are supported at each end to resist vertical loads caused by overturning. (Commentary: Sec. A.3.2.2.3. Tier 2: Sec. 5.5.3.2.1) Comments:

Diaphragms (Stiff Or Flexible)

			Description
C NC	N/A	U	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1)
			Comments:

	ι	UC C	ampu	IS: San Franci	isco		Date:		12/10/2019			
	Bui	ilding	CAA	N: 2036	Auxiliary CAAN:		By Firm:		MSE			
	Bu	ilding	Nam	ne: Mt. Zion 1701 Divisa	adero, MOB 2		Initials:	RBW	Checked:	ЈМ		
	Build	ing A	ddres	SS: 1701 Divisadero St.,	San Francisco)	Page:	3	of	3		
C	ASCE 41-17 Collapse Prevention Structural Checklist For Building Type C2-C2A C NC N/A U OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3) Comments:											
Fle	lexible Diaphragms											
			-			Descriptio	n					
C C	NC C	N/A ⑦	U	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2) Comments:								
C C	NC C	N/A ⓒ	U	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments:								
C C	NC O	N/A ⓒ	U	SPANS: All wood diaphragms with s sheathing. (Commentary: Sec. A.4.2.2.	pans greater Tier 2: Sec. 5.	than 24 ft (7 6.2)	.3 m) consist	of wood st	ructural panels	or diagonal		
C C	NC O	N/A ⓒ	U	DIAGONALLY SHEATHED AND UNE panel diaphragms have horizontal sp (Commentary: Sec. A.4.2.3. Tier 2: Sec Comments:	BLOCKED DIA pans less than b. 5.6.2)	PHRAGMS: <i>J</i> 40 ft (12.2	All diagonally m) and aspe	sheathed or ct ratios les	r unblocked woo ss than or equa	d structural I to 4-to-1.		
C	NC C	N/A ⓒ	U	OTHER DIAPHRAGMS: Diaphragms bracing. (Commentary: Sec. A.4.7.1. Ti	do not consist er 2: Sec. 5.6.	of a system	other than wo	ood, metal d	eck, concrete, o	r horizontal		
Co	nne	ctio	ns									
						Descriptio	n					
C	NC C	N/A	U	UPLIFT AT PILE CAPS: Pile caps hav A.5.3.8. Tier 2: Sec. 5.7.3.5) Comments:	ve top reinforce	ement, and pi	les are anchor	red to the pi	le caps. (Comme	entary: Sec.		

UC Campus:	San Fran	Date:		12/10/2019				
Building CAAN:	2036	Auxiliary CAAN:	By Firm:		MSE			
Building Name:	Mt. Zion 1701 Divis	Initials:	RBW	Checked:	JМ			
Building Address:	1701 Divisadero St.	, San Francisco	Page:	1	of	4		
ASCE 41-17								

Collapse Prevention Structural Checklist For Building Type S1-S1A

LOW SEISMICITY

SEISMIC-FORCE-RESISTING SYSTEM

				Description
С	NC	N/A	U	REDUNDANCY: The number of lines of moment frames in each principal direction is greater than or equal to 2. (Com-
\odot	0	0	\mathbf{O}^{-}	mentary: Sec. A.3.1.1.1. Her 2: Sec. 5.5.1.1)
				Comments: There are 2 moment frame lines in the N-S direction and 3 in the E-W direction.
C	NC	N/A		DRIFT CHECK: The drift ratio of the steel moment frames, calculated using the Quick Check procedure of Section 4.4.3.1
Ō	()	0	ŏ	is less than 0.030. (Commentary: Sec. A.3.1.3.1. Tier 2: Sec. 5.5.2.1.2)
	10	0	~	Commental Drift ratios at the 2 rd and 2 nd floors are 0.027 and 0.050 respectively based on the Quick
				Comments: Drift ratios at the 3° and 2° moors are 0.037 and 0.050 respectively based on the Quick
				COLUMN AVIAL CTDECC OUECK. The evide share exceed by snouth leads in columns out is the to succeed and
C	NC	N/A	U	less than 0.10Fy. Alternatively, the axial stress caused by overturning forces alone, calculated using the Quick Check
\odot	Q	O	O.	procedure of Section 4.4.3.6, is less than 0.30Fy. (Commentary: Sec. A.3.1.3.2. Tier 2: Sec. 5.5.2.1.3)
				Comments: Checked using the Section 4.4.2.6 Quick Check procedure
				Comments. Checked using the Section 4.4.5.0 Quick Check procedule.
С	NC	N/A	U	FLEXURAL STRESS CHECK: The average flexural stress in the moment frame columns and beams, calculated using the
\odot	0	0	\mathbf{O}^{-}	Quick Check procedure of Section 4.4.3.9, is less than F_y . Columns need not be checked if the strong column–weak beam checklist item is compliant. (Commentary: Sec. A.3.1.3.3. Tier 2: Sec. 5.5.2.1.2)
				Comments: Checked using the Section 4.4.3.9 Quick Check procedure.
			<u></u>	
CO	NN		ON	8
				Description
С	NC	N/A	U	TRANSFER TO STEEL FRAMES: Diaphragms are connected for transfer of seismic forces to the steel frames.
\odot	\odot	0	0	(Commentary: Sec. A.5.2.2. Tier 2: Sec. 5.7.2)
		-		Comments: ³ / ₄ " diameter Nelson studs (detail 5/S1.2) occur at all moment frame griders. Steel
				decking is welded to steel frames per detail 6/S1.2.
		NI/A		STEEL COLLIMNS: The columns in science force resisting frames are anchored to the building foundation. (Commentary
	NC	N/A	υ	Is the control of the

UC Campus:	UC Campus: San Francisco						12/10/2019		
Building CAAN:	2036	Auxiliary CAAN:	AN: By Firm: MSE						
Building Name:	ne: Mt. Zion 1701 Divisadero, MOB 2				RBW	Checked:	ЈМ		
Building Address:	1701 Divisadero S	t., San Francisco	,	Page:	2	of	4		
		ASCE 41	-17						

Collapse Prevention Structural Checklist For Building Type S1-S1A

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

SEISMIC-FORCE-RESISTING SYSTEM

				Description
C ©	NC C	N/A C	U	REDUNDANCY: The number of bays of moment frames in each line is greater than or equal to 2. (Commentary: Sec. A.3.1.1.1. Tier 2: Sec. 5.5.1.1) Comments:
C ©	NC C	N/A C	U	INTERFERING WALLS: All concrete and masonry infill walls placed in moment frames are isolated from structural elements. (Commentary: Sec. A.3.1.2.1. Tier 2: Sec. 5.5.2.1.1) Comments: There are no concrete or CMU infill walls at floors 1 through 5.
C ©	NC C	N/A C	U	MOMENT-RESISTING CONNECTIONS: All moment connections can develop the strength of the adjoining members based on the specified minimum yield stress of steel. (Commentary: Sec. A.3.1.3.4. Tier 2: Sec. 5.5.2.2.1). Comments: Full-penetration flange welds considered non-compliant at Tier 1 per A3.1.3.4

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)

SEISMIC-FORCE-RESISTING SYSTEM

				Description
с ⊙	NC C	N/A C	U	MOMENT-RESISTING CONNECTIONS: All moment connections are able to develop the strength of the adjoining members or panel zones based on 110% of the expected yield stress of the steel in accordance with AISC 341, Section A3.2. (Commentary: Sec. A.3.1.3.4. Tier 2: Sec. 5.5.2.2.1)
				Comments: Flange cover plates are used, per detail 1/S1.2, that are either 1.0x or 1.5x the girder flange thickness. These, along with the girder flanges, have full-penetration welds to the columns.
с O	NC ©	N/A C	U	PANEL ZONES: All panel zones have the shear capacity to resist the shear demand required to develop 0.8 times the sum of the flexural strengths of the girders framing in at the face of the column. (Commentary: Sec. A.3.1.3.5. Tier 2: Sec. 5.5.2.2.2) Comments: This is non-conforming at the majority of panel zones, with DCRs as high as 3.0

	ι	UC C	ampı	s:	Sa	an Franci	isco		Date:		12/10/2019					
	Bui	ilding	CAA	N:	2036		Auxiliary CAAN:		By Firm:		MSE					
	Bu	ilding	Nam	e:	Mt. Zion 17	'01 Divisa	adero, MOB 2		Initials:	RBW	Checked:	ЈМ				
E	Buildi	ing A	ddres	s:	1701 Divisad	dero St., S	San Francisco	D	Page:	3	of	4				
	Co	ollap	ose	Preventi	ion Stru	A uctur	SCE 4 ^r al Cheo	1-17 cklist F	or Build	ding Ty	ype S1-S	51A				
C	NC	N/A	U	COLUMN SPLIC the web. (Comm	ES: All colum entary: Sec. A	nn splice A.3.1.3.6.	details located Tier 2: Sec. 5	l in moment-re 5.2.2.3)	esisting frames	include cor	nnection of both	flanges and				
	6	0	0	Comments: S	mments: See detail 4/S4.1 ((Included in report in figure 4.)											
с ⊙	NC O	N/A	U	STRONG COLU moment frames Comments: S	NG COLUMN—WEAK BEAM: The percentage of strong column–weak beam joints in each story of each line of nt frames is greater than 50%. (Commentary: Sec. A.3.1.3.7. Tier 2: Sec. 5.5.2.1.5) ments: See calculations. Lowest percentage (levels 2 & 3 in frame on line 7) is 60% > 50%											
C	NC	N/A	U	COMPACT MEN moderately ducti	ACT MEMBERS: All frame elements meet section requirements in accordance with AISC 341, Table D1.1, for ately ductile members. (Commentary: Sec. A.3.1.3.8. Tier 2: Sec. 5.5.2.2.4)											
		0	0	Comments: S	omments: See calculations.											
DIAPHRAGMS (STIFF OR FLEXIBLE)																
DIA	PH	RAG	GMS	(STIFF OR	FLEXIBI	LE)										
DIA	PH	RAG	SMS	(STIFF OR	FLEXIBI	LE)		Descriptio	n							
DIA C ©		RAG N/A	U C	(STIFF OR OPENINGS AT total frame lengt	FLEXIBI	LE) aphragm o ary: Sec. #	openings imm A.4.1.5. Tier 2:	Description ediately adjac Sec. 5.6.1.3)	n ent to the mor	nent frames o	extend less than	25% of the				
DIA c	NC O	RAG N/A C	U C	(STIFF OR OPENINGS AT total frame lengt Comments:	FLEXIBI FRAMES: Dia h. (Commenta Line 7, 2 nd fl Line 3, 2 nd f	LE) aphragm (ary: Sec. / floor (sta floor (ga	openings imm A.4.1.5. Tier 2 hir #2 and ve rage exhaus	Description ediately adjac Sec. 5.6.1.3) ent shaft ope st shaft) 7/4	n ent to the morr enings:) (13. 4.3 = 16%	nent frames (8+4)/87.4	extend less than = 20%	25% of the				
C C C		RAG N/A C BLE	U C DIA	(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS	FLEXIBI FRAMES: Dia h. (Commenta Line 7, 2 nd fl Line 3, 2 nd f	LE) aphragm o ary: Sec. / floor (sta floor (ga	openings imm A.4.1.5. Tier 2: hir #2 and ve rage exhaus	Description ediately adjac Sec. 5.6.1.3) ent shaft ope st shaft) 7/4	n ent to the mom enings:) (13. 4.3 = 16%	nent frames (8+4)/87.4	extend less than = 20%	25% of the				
DIA C ©		RAG N/A C BLE	U C DIA	(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS	FLEXIBI FRAMES: Dia h. (Commenta Line 7, 2 nd f Line 3, 2 nd f	LE) aphragm o ary: Sec. / floor (sta floor (ga	openings imm A.4.1.5. Tier 2: Air #2 and ve rage exhaus	Description ediately adjac Sec. 5.6.1.3) Int shaft ope at shaft) 7/4 Description	n ent to the mon enings:) (13. 4.3 = 16% n	nent frames (8+4)/87.4	extend less than = 20%	25% of the				
C ⊙ FLE C		RAG N/A C BLE N/A ©		(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS CROSS TIES: T 5.6.1.2)	FLEXIBI FRAMES: Dia h. (Commenta Line 7, 2 nd fl Line 3, 2 nd f	LE) aphragm o ary: Sec. / floor (sta floor (ga	openings immo A.4.1.5. Tier 2: hir #2 and ve rage exhaus	Description ediately adjac Sec. 5.6.1.3) ent shaft ope at shaft) 7/4 Description en diaphragm	n ent to the morr enings:) (13. 4.3 = 16% n chords. (Comr	nent frames (8+4)/87.4 mentary: Sec	extend less than = 20% c. A.4.1.2. Tier 2:	25% of the				
C € FLE C		RAG N/A C BLE N/A ©		(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS CROSS TIES: T 5.6.1.2) Comments:	FLEXIBI	LE) aphragm o ary: Sec. / floor (sta floor (ga	openings imm A.4.1.5. Tier 2: hir #2 and ve rage exhaus	Description ediately adjac Sec. 5.6.1.3) ant shaft ope at shaft) 7/4 Description en diaphragm	n ent to the mom enings:) (13. 4.3 = 16% n chords. (Comm	nent frames (8+4)/87.4 mentary: Sec	extend less than = 20% c. A.4.1.2. Tier 2:	25% of the				
C C C C C C		RAG N/A © BLE N/A ©		(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS CROSS TIES: T 5.6.1.2) Comments: STRAIGHT SHE considered. (Cor	FLEXIBI	LE) aphragm o ary: Sec. / floor (sta floor (ga inuous cro inuous cro	openings imme A.4.1.5. Tier 2: hir #2 and ve rage exhaus oss ties betwe sheathed diap	Description ediately adjac Sec. 5.6.1.3) ant shaft ope st shaft) 7/4 Description en diaphragm hragms have 5.6.2)	n ent to the morr enings:) (13. 4.3 = 16% n chords. (Comr aspect ratios	hent frames (8+4)/87.4 mentary: Sec	extend less than = 20% : A.4.1.2. Tier 2: -to-1 in the dire	25% of the				
C C C C C		RAG N/A SLE N/A ©		(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS CROSS TIES: T 5.6.1.2) Comments: STRAIGHT SHE considered. (Cor Comments:	FLEXIBI	LE) aphragm o ary: Sec. A floor (sta floor (ga inuous cro inuous cro	openings imm A.4.1.5. Tier 2: hir #2 and ve rage exhaus oss ties betwe sheathed diap	Description ediately adjac Sec. 5.6.1.3) ent shaft ope st shaft) 7/4 Description en diaphragm hragms have 5.6.2)	n ent to the morr enings:) (13. 4.3 = 16% n chords. (Comr aspect ratios	nent frames of 8+4)/87.4 mentary: Sec	extend less than = 20% . A.4.1.2. Tier 2: . eto-1 in the dire	25% of the				
C C C C C C C C C		RAG N/A C BLE N/A C N/A C N/A C		(STIFF OR OPENINGS AT total frame lengt Comments: PHRAGMS CROSS TIES: T 5.6.1.2) Comments: STRAIGHT SHE considered. (Cor Comments: SPANS: All woo sheathing. (Com	FLEXIBI	LE) aphragm o ary: Sec. / floor (sta floor (ga inuous cro l straight- ec. A.4.2.1	openings imm A.4.1.5. Tier 2: air #2 and ve rage exhaus opens ties betwe sheathed diap . Tier 2: Sec. 5 pans greater f Tier 2: Sec. 5	Description ediately adjac Sec. 5.6.1.3) Int shaft ope at shaft) 7/4 Description en diaphragm hragms have 5.6.2)	n ent to the morr enings:) (13. 4.3 = 16% n chords. (Comr aspect ratios	hent frames (8+4)/87.4 mentary: Sec less than 2 of wood st	extend less than = 20% c. A.4.1.2. Tier 2: e-to-1 in the direction ructural panels	25% of the				

UC Campu	S: San Fra	ancisco	Date:		12/10/2019								
Building CAAI	N: 2036	Auxiliary CAAN:	By Firm:										
Building Nam	e: Mt. Zion 1701 Di	visadero, MOB 2	Initials:	RBW Checked: JN									
Building Addres	S: 1701 Divisadero S	St., San Francisco	Page:	4 of 4									
ASCE 41-17 Collapse Prevention Structural Checklist For Building Type S1-S1A													
C NC N/A U DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3, Tier 2; Sec. 5.6.2)													
	Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2)												
C NC N/A U C C © C	C NC N/A U OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)												
	Comments:												

	UC Campus:	San Fra	ancisco		Date:	12/10/2019			
	Building CAAN:	2036	Auxiliary CAAN:		By Firm:		MSE		
	Building Name:	Mt. Zion 1701 Divi	Mt. Zion 1701 Divisadero, MOB 2				Checked:	ЈМ	
В	Building Address:	1701 Divisadero S	t., San Francisco		Page:	1	of	1	
		UCOP SE Falling Haza	ISMIC SAF ard Assess	ETY F	POLICY Summa	arv			

		Description
P	N/A ⊠	Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate (50 ppl or more)
		Comments: none observed
Р	N/A	Heavy masonry or stone veneer above exit ways or public access areas
	\boxtimes	Comments: none observed
Р	N/A	Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas
	\boxtimes	Comments: none observed
P	N/A	Unrestrained hazardous material storage
	\boxtimes	Comments: none observed
P	N/A	Masonry chimneys
	\boxtimes	Comments: none observed
-		
P	N/A	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.
	\boxtimes	Comments: There is a gas-fired water heater at the upper roof level with seismic restraints, and there is an earthquake-activated automatic gas shutoff device at the main shutoff.
P	N/A	Other:
		Comments:

Falling Hazards Risk: Low

SEISMIC EVALUATION OF EXISTING BUILDINGS - TIER 1 SCREENING

ASCE 41-17 Chapter 4

General					(parentheses indicate ASCE 41-17 reference)
Building	Mt. Zion M	1OB 2, 1701	L Divisadero		
Architect	Kaplan Mc	Laughlin Di	az		
Structural Engineer	Steven Tip	ping + Asso	ociates		
Location	1701 Divis	adero St., S	an Francisco, CA 94115		
Design date	1995				
Latitude	37.7855				Google Earth
Longitude	-122.4402				
Stories above grade	5				
Seismic parameters					CPC 2016 Table 1604 F
Risk Calegoly	" D				CBC 2010 Table 1004.5
Sile Class	VoruLow				Egan report
c	1 422				
3 _{cS}	1.433	g			Egan report
S _{c1}	0.972	g			Egan report
Scope	6.0				
Performance level					(4.1.1, Table 2-1)
Seismic nazard level	BSE-C				(4.1.2, Table 2-1)
Level of seismicity	Hign C1: Ctaal m				(4.1.3, Table 2-5)
Building type	S1: Steel m	to choor w	nes with stiff diaphragms		(4.2.2, Table 3-1)
	CZ. CONCIE	ete shear w	ans with still ulapin agins		
Material properties			Notes		
Steel F _v	50	ksi	SMRF cols A572 Gr 50		(Table 4-5)
Steel F _v	49	ksi	SMRF bms A36		(Table 4-5)
Steel E	29000	ksi			(4.2.3)
Concrete f'	4000	nsi	Walls		
Reinf f	60000	nsi			
Nenn. Jy	00000	hai			

Checklists

Benchmark building	No					UCC	OP Seismic Program	m Guidebook v. 1.3 Table 2				
Checklist(s) req'd	ASCE 41-17 Collapse Prevention Structural Checklist for Building Type S1											
	ASCE 41-17	ASCE 41-17 Collapse Prevention Structural Checklist for Building Type C2										
	ASCE 41-17	ASCE 41-17 Collapse Prevention Basic Configuration										
	UCOP SEIS	MIC SAFET	Y POLICY Falling Ha	azard Assessi	ment Summary							
Seismic forces												
14	0754	1.1.1	14 66 144		0.001/	/-						

V	3751	kip	$V = CS_a W$	= 0.98W	(Eq. 4-1)
W	3810	kip	building weight		(4.5.2.1)
С	1.0				(Table 4-7)
S _a	0.985	g	$S_a = S_{x1}/T \leq S_{XS}$		(Eq. 4-3)
Т	0.99	sec	$T = C_t h_n^{\beta}$		(Eq. 4-4)
C_t	0.035				(4.4.2.4)
β	0.80				(4.4.2.4)
h _n	65.0	ft	building height		

Story forces

Above groun	d									
				$F_{story} = V(w)$	h^k)/($\Sigma w h^k$)			(Eq. 4-2a)		
				$V_{story} = \Sigma_{ahov}$	F story			(Eq. 4-2b)		
k		1.24		k = 1.0 for T	< 0.5, 2.0 fc	or T > 2.5,		(4.4.2.2)		
				linear interp	olation betw	veen		. ,		
						(4-2a)	(4-2b)	4 - 5	1 -3	
Level	w	story ht	h	wh ^k	F story	F story	V story	M _{OT}	Мот	
	kip	ft	ft			kip	kip	kip∙ft	kip∙ft	
high roof	593		65.0	106535	0.30	1142				
5	561	12.50	52.5	77247	0.22	828	1142	14277		
4/ low roof	867	12.50	40.0	85168	0.24	913	1970	38907		
3	889	12.50	27.5	54797	0.16	587	2883		36043	
2	900	12.50	15.0	26120	0.07	280	3471		79430	
1		15.00	0.0				3751		135694	
totals	3810			349867	1.0	3751				
Below groun	d			$PGA = 0.4 \cdot S_x$	s					
				F _{story} = PGA·	w					
				$V_{story} = \Sigma_{abc}$	ove F story					
Level	w	story ht	h		PGA	F story	V _{story}	-		
	kip	ft	ft		g	kip	kip			
1	3065				0.57	1757		-		
B1	2869	10.00	-10		0.57	1645	5508			
B2	2790	8.59	-19		0.57	1599	7152			
B3	2920	8.58	-27		0.57	1673	8752			
B4		8.91	-36				10425	_		
								_		
Shear stress	in shear w	ralls	(4-9)	(4-9)						
Story	A _{wN-S}	A _{w E-W}	V _{NS} ^{avg}	v _{EW} ^{avg}	D/C _{NS}	D/C _{EW}	Notes			
	in ²	in ²	psi	psi						
B1	39427	33120	31	37	0.2	0.3	stress cheo	ck w/ full sto	ory force ignorin	ng 8" Line B & C 8" walls (cons.
B2	46166	38640	34	41	0.3	0.3				
B3	46166	38640	42	50	0.3	0.4				
B4	46166	38640	50	60	0.4	0.5				
Total										
M _s	4.5							(Table 4-8)		
V _{limit}	126	psi	$v_{limit} = 2\sqrt{2}$	f _c ' ≥ 100 psi, f	f' _c is spec'd s	trength				

 $v^{avg} = (1/M_s)(V_{story}/A_w)$

Shear strength of concrete columns at parking levels

check that $\phi V_n > 2\phi M_n/L$, ignoring axial load

2φM_n/L Vc Vs Grid Level Diameter L spiral long φM_n d b_w φV_n φV_n > 2φM_n/L ? in in k ft k in in kip kip kip D4 Β1 22 103 #4 @ 6" 8-#8 205.8 48.0 17.6 22.0 49.0 70.4 89.5 yes B2 22 86.08 #4@6" 8-#8 205.8 57.4 17.6 22.0 49.0 70.4 89.5 yes Β3 #4@6" 22 86.08 8-#10 263.6 73.5 17.6 22.0 49.0 70.4 89.5 yes D2 Β1 20 103 #4@6" 8-#8 20.0 78.4 171.9 40.1 16.0 40.5 64.0 yes B2 20 86.08 #4@6" 8-#8 171.9 47.9 16.0 20.0 40.5 64.0 78.4 yes Β3 20 86.08 #4 @ 6" 8-#10 59.5 16.0 20.0 40.5 64.0 78.4 213.4 yes

dets 1 & 5/S3.2

(4-9)

Drift check

(4.4.3.1)

$$D_r = \left(\frac{k_b + k_c}{k_b k_c}\right) \left(\frac{h}{12E}\right) V_c$$

(4-6)

D_r = drift ratio for stories with continuous columns above and below

direction	story	column	I _c	h	k _c	beam	I _b	L	k _b	V story	n_col	V _c	D _r
		section	in ⁴	in		section	in ⁴	in		kip		kip	
E-W	5	W14X132	1530	150	10.2	W24x55	1350	270	5.0	1142	6	190	0.024
	3	W14X132	1530	150	10.2	W24X62	1550	262.25	5.9	2883	13	222	0.026
	2	W14X132	1530	150	10.2	W24X62	1550	262.25	5.9	3471	13	267	0.031
N-S	5	W14X132	1530	150	10.2	W27x94	3270	313	10.4	1142	6	190	0.016
	3	W14X132	1530	150	10.2	W24X62	1550	306.5	5.1	2883	10	288	0.037
	2	W14X132	1530	165	9.3	W24X62	1550	306.5	5.1	3471	10	347	0.050

(4.4.3.6)

$$p_{ot} = \frac{1}{M_s} \left(\frac{2}{3}\right) \left(\frac{Vh_n}{Ln_f}\right) \left(\frac{1}{A_{col}}\right)$$
(Eq. 4-11)

direction	E/W	N/S		
V	3751	3751	kip	
n _f	3	2		total no.of frames in the direction of loading
h _n	65.0	65.0	ft	
L	87.4	102.2	ft	
col_sec	W14X132	W14X132		end column section
A _{col}	38.80	38.80	in ²	
M _s	2.5	2.5		CP
p _{ot}	6.39	8.20	ksi	
Fy	50	50	ksi	(Table 4-5)
$P_{ot} < 0.1F_{y}$	YES	YES		

Strong column - weak beam check

AISC 341-16 Sect. E.4.a

check 2 representative SMRFs

Line 6 (south façade, transverse direction)

Line F (east façade, longitudinal direction)

$$\frac{\sum M_{pc}^{*}}{\sum M_{pb}^{*}} > 1.0$$
AISC 341-16 Eq E3-1
AISC 341-16 Eq E3-1
AISC 341-16 Eq E3-1

$$\sum M_{pc}^* = \sum Z_c (F_{yc} - \alpha_s P_r / A_g)$$

All SMRF columns:	W14X132	
Z _c	234	in ³
A_g	38.8	in ²
<i>d</i> _c	14.7	in
t _w	0.645	in
α _s	1.0	(factored loads)
P _r	$P_{grav} + P_{eq}$	

P _{grav}		1.1(D+0.25	5·L)·TA	kips	TA = trib area, L = floor & roof live loads, unreduced						
Frame			6					F			
Col	В	С	D	E	F	6	5	4	3	2	
5		17.4	16.8	15.9		16.0	20.3	20.2			_
4		36.1	35.1	33.0		33.4	42.3	42.0			
3	35.6	57.2	55.6	52.3	23.6	52.8	67.0	66.6	44.6	16.2	
2	49.0	78.7	76.4	72.0	40.7	72.7	92.2	91.6	68.4	35.9	
1	75.4	121.1	117.6	110.8	42.6	96.7	117.2	106.6	73.5	40.2	

P _{eq}		(M _{ot} · x) ·	A _g ∕(n _{frame} ·I _{fra}	_{ame})	kips					
Frame			7					F		
I _{frame} (ft ⁴)			1300.5					1773.3		
Col	В	С	D	E	F	6	5	4	3	2
x (ft)	46.02	19.68	0.35	24.65	41.40	51.37	26.37	1.13	25.80	50.80
5		153.3	13.6	167.0		133.7	4.3	138.0		
4		417.8	37.2	455.0		364.4	11.8	376.1		
3	154.6	484.0	38.4	537.8	139.1	505.0	84.0	379.2	70.6	139.1
2	191.3	563.6	39.8	637.6	191.3	674.4	170.9	383.0	155.7	306.6
1	666.8	666.8	41.6	766.9	523.8	893.9	283.6	387.8	266.0	523.7

P _r		$P_{grav} + P_{eq}$			kips					
Frame			6					F		
Col	В	С	D	E	F	6	5	4	3	2
5		170.7	30.5	182.8		149.7	24.6	158.2		
4		454.0	72.3	488.1		397.8	54.1	418.2		
3	190.3	541.2	93.9	590.2	162.7	557.9	150.9	445.8	115.2	155.3
2	240.3	642.3	116.2	709.5	232.0	747.1	263.0	474.6	224.1	342.4
1	742.2	788.0	159.2	877.6	566.4	990.7	400.8	494.4	339.5	563.9

M _{pc}	$Z_{c}(F_{yc} - \alpha_{s}P_{r}/A_{g})$				kip∙in					
Frame										
Col	В	С	D	E	F	6	5	4	3	2
5		10671	11516	10597		10797	11552	10746		
4		8962	11264	8757		9301	11374	9178		
3	10553	8436	11134	8141	10719	8335	10790	9011	11005	10764
2	10251	7826	10999	7421	10301	7195	10114	8838	10349	9635
1	7224	6948	10740	6407	8284	5725	9283	8718	9653	8299

$\Sigma M_{pb}^* = \Sigma (M_{pr} + M_v)$
$M_{pr} = F_{yb} \cdot Z_{bx}$
$V_p = 2 \cdot M_{pr} / L$

 $M_v = V_p(d_c/2+e)$

L = distance between column centerlines L` = L - 2e - d_c

beam sections

Frame		7				F		
level / bay	B - C	C - D	D - E	E - F	6 - 5	5 - 4	4 - 3	3 - 2
L (ft)	26.33	19.33	24.30	16.75	25.00	25.23	24.67	25.00
5		W24X55	W24X55		W24X55	W24X55		
4	W24x62	W24x62	W24x62	W24x62	W24X55	W24X55	W24X55	W24X55
3	W24x62							
2	W24x62							

beam	Z_{bx}	е	d _c /2+e
	in ³	in	in
W21X50	110	12.40	19.75
W24X55	134	13.80	21.15
W24x62	153	13.85	21.20

e distance is per detail 1/S2.1

M _{pr}				kip∙in				
Frame		7				F		
level / bay	B - C	C - D	D - E	E - F	6 - 5	5 - 4	4 - 3	3 - 2
5		6566	6566		6566	6566		
4	7497	7497	7497	7497	6566	6566	6566	6566
3	7497	7497	7497	7497	7497	7497	7497	7497
2	7497	7497	7497	7497	7497	7497	7497	7497

M _v				kip∙in				
Frame		7				F		
level / bay	B - C	C - D	D - E	E - F	6 - 5	5 - 4	4 - 3	3 - 2
5		1464	1114		1078	1066		
4	1162	1677	1276	2004	1078	1066	1095	1078
3	1162	1677	1276	2004	1234	1221	1253	1234
2	1162	1677	1276	2004	1234	1221	1253	1234

M _{pb}				kip∙in				
Frame		7				F		
level / bay	B - C	C - D	D - E	E - F	6 - 5	5 - 4	4 - 3	3 - 2
5		8030	7680		7644	7632		
4	8659	9174	8773	9501	7644	7632	7661	7644
3	8659	9174	8773	9501	8731	8718	8750	8731
2	8659	9174	8773	9501	8731	8718	8750	8731

∑M [*] _{pc}				kip∙in						
Frame			7					F		
level/col	В	С	D	E	F	6	5	4	3	2
5		19633	22780	19354		20098	22925	19924		
4	10553	17398	22398	16897	10719	17637	22164	18189	11005	10764
3	20803	16262	22133	15561	21019	15530	20903	17849	21354	20398
2	17474	14774	21739	13828	18585	12920	19397	17556	20001	17934

∑M [*] _{pb}				kip∙in						
Frame			7					F		
level/col	В	С	D	E	F	6	5	4	3	2
5		8030	15710	7680		7644	15276	7632		
4	8659	17832	17946	18274	9501	7644	15276	15293	15305	7644
3	8659	17832	17946	18274	9501	8731	17449	17468	17481	8731
2	8659	17832	17946	18274	9501	8731	17449	17468	17481	8731

	• /
×M.	/SM
2111	nc/ ZIVI

$\Sigma M_{pc}^{*}/\Sigma M_{pb}^{*}$										
Frame			7					F		
level/col	В	С	D	E	F	6	5	4	3	2
5		2.44	1.45	2.52		2.63	1.50	2.61		
4	1.22	0.98	1.25	0.92	1.13	2.31	1.45	1.19	0.72	1.41
3	2.40	0.91	1.23	0.85	2.21	1.78	1.20	1.02	1.22	2.34
2	2.02	0.83	1.21	0.76	1.96	1.48	1.11	1.01	1.14	2.05

Flexural stress check -beams (4.4.3.9)

$$f_j^{\text{avg}} = V_j \frac{1}{M_s} \left(\frac{n_c}{n_c - n_j} \right) \left(\frac{h}{2} \right) \frac{1}{Z}$$
(4-14)

 n_{mc} = no. of beam ends with moment connection to column

M _s		9.0		СР							
direction	level	h	V_{j}	n _f	n _c	beam	Z _b	n _{mc}	$Z_b \cdot n_{mc}$	Ζ	f_j^{avg}
		in	kip			sections	in ³		in ³	in ³	ksi
E-W	high roof	150	1142	2	6	W21X50	110	2	220	880	16.22
						W21X50	110	2	220		
						W21X50	110	2	220		
						W21X50	110	2	220		
	5	150	1970	2	6	W24X55	134	2	268	1072	22.98
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
	4/ LR	150	2883	3	13	W24X55	134	2	268	2870	10.88
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
						W21X73	172	2	344		
						W21X73	172	2	344		
						W24X62	153	2	306		
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
	3	150	3471	3	13	W24X62	153	2	306	3136	11.99
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W21X73	172	2	344		
						W21X73	172	2	344		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
	2	180	3751	3	13	W24X62	153	2	306	3136	15.55
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W21X73	172	2	344		
						W21X73	172	2	344		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		

www.maffei-structure.com

Project:_	
Subject:	
By:_	
Date:	

N-S	roof	150	1142	2	6	W21X50	110	2	220	880	16.2
						W21X50	110	2	220		
						W21X50	110	2	220		
						W21X50	110	2	220		
-	5	150	1970	2	6	W24X55	134	2	268	1072	23.0
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
-	4/LR	150	2883	2	10	W24X55	134	2	268	2144	14.01
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
						W24X55	134	2	268		
_						W24X55	134	2	268		
-	3	150	3471	2	10	W24X62	153	2	306	2448	14.77
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
_						W24X62	153	2	306		
	2	180	3751	2	10	W24X62	153	2	306	2448	19.15
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		
						W24X62	153	2	306		

Flexural stress check - columns (4.4.3.9)

M _s		9.0		CP					
direction	level	h	V_{j}	n _f	n _c	column	Z _c	Ζ	f_j^{avg}
		in	kip			sections	in ³	in ³	ksi
E-W	high roof	150	1142	2	6	W14X132	234	1404	10.17
	5	150	1970	2	6	W14X132	234	1404	17.54
	4/LR	150	2883	3	13	W14X132	234	3042	10.27
	3	150	3471	3	13	W14X132	234	3042	12.36
	2	180	3751	3	13	W14X132	234	3042	16.03
N-S	high roof	150	1142	2	6	W14X132	234	1404	10.17
	5	150	1970	2	6	W14X132	234	1404	17.54
	4/LR	150	2883	2	10	W14X132	234	2340	12.84
	3	150	3471	2	10	W14X132	234	2340	15.45
	2	180	3751	2	10	W14X132	234	2340	20.04

Panel zone capacity check

The available strength of the web panel zone for the limit state of shear yielding shall	beam	d	tf
be determined as follows:		in	in
$\phi = 0.90 \text{ (LRFD)} \qquad \Omega = 1.67 \text{ (ASD)}$	W21X50	20.8	0.535
The nominal strength, R_n , shall be determined as follows:	W24X55	23.6	0.505
(a) When the effect of inelastic panel-zone deformation on frame stability is not accounted for in the analysis;	W24x62	23.7	0.59
(1) For $\alpha P \leq 0.4P$			
$R_n = 0.60F_y d_c t_w \tag{J10-9}$	AISC 360-16		
(2) For $\alpha P_r > 0.4 P_y$			
$R_n = 0.60 F_y d_c t_w \left(1.4 - \frac{\alpha P_r}{P_y} \right) $ (J10-10)	AISC 360-16		
$0.6 \cdot F_v \cdot d_c \cdot t_w = 284 \text{ kips}$			

 $P_y = F_y \cdot A_g =$ 1940 kips

 P_r/P_y

• 1 / • y										
Frame			6					F		
Col	В	С	D	E	F	6	5	4	3	2
5		0.09	0.02	0.09		0.08	0.01	0.08		
4		0.23	0.04	0.25		0.21	0.03	0.22		
3	0.10	0.28	0.05	0.30	0.08	0.29	0.08	0.23	0.06	0.08
2	0.12	0.33	0.06	0.37	0.12	0.39	0.14	0.24	0.12	0.18
1	0.38	0.41	0.08	0.45	0.29	0.51	0.21	0.25	0.17	0.29
(1.4·P _r /P _y)										
Frame			6					F		
Col	В	С	D	E	F	6	5	4	3	2
5		1	1	1		1	1	1		
4		1	1	1		1	1	1		
3	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1
1	1.02	0.99	1	0.95	1	0.89	1	1	1	1
R _n			kip							
Frame			6					F		
Col	В	С	D	E	F	6	5	4	3	2
5		284	284	284		284	284	284		
4		284	284	284		284	284	284		
3	284	284	284	284	284	284	284	284	284	284
2	284	284	284	284	284	284	284	284	284	284
1	289	283	284	270	284	253	284	284	284	284
ΣM [*]			kinin							
Erame			7					F		
level/col	В	C	, D	F	F	6	5	4	3	2
5		8030	15710	7680		7644	15276	7632		
4	8659	17832	17946	18274	9501	7644	15276	15293	15305	7644
3	8659	17832	17946	18274	9501	8731	17449	17468	17481	8731
2	8659	17832	17946	18274	9501	8731	17449	17468	17481	8731
0.8 V _b			kip							
Frame			7					F		
level/col	В	С	D	E	F	6	5	4	3	2
5		266.50	521.39	254.89		253.68	506.98	253.30		
4	285.18	587.32	591.06	601.85	312.93	253.68	506.98	507.54	507.93	253.68
3	324.68	668.66	672.93	685.21	356.27	327.39	654.27	655.00	655.50	327.39
2	324.68	668.66	672.93	685.21	356.27	327.39	654.27	655.00	655.50	327.39

0.8V _b /R _n										
Frame			7					F		
level/col	В	С	D	E	F	6	5	4	3	2
5		0.94	1.83	0.90		0.89	1.78	0.89		
4	1.00	2.06	2.08	2.12	1.10	0.89	1.78	1.78	1.79	0.89
3	1.14	2.35	2.37	2.41	1.25	1.15	2.30	2.30	2.30	1.15
2	1.12	2.37	2.37	2.54	1.25	1.29	2.30	2.30	2.30	1.15

Compact member check

Ε	29000	ksi	elastic modulus	
F _{y36}	37	ksi	specified min yield stress	
F _{y50}	50	ksi	specified min yield stress	
R _{y36}	1.5		expected/min yield stress ratio	AISC 341 Table A3.1
R _{y50}	1.1		expected/min yield stress ratio	AISC 341 Table A3.1
Φ_c	0.9		resistance factor for compression	AISC 360 H1.1
Ca	0.1		(assumed value)	AISC 341 Table D1.1

Check moment frame members using Table D1.1

Section	Fy	Ry	b/t	λ_{md}	Check	h/t _w	λ_{md}	Check
W14X132	50	1.1	7.15	9.2	С	17.7	63	С
W21X50	37	1.1	6.10	10.7	С	49.4	74	С
W24X55	37	1.5	6.94	9.1	С	54.6	63	С
W21X73	37	1.5	5.60	9.1	С	41.2	63	С
W24X62	37	1.5	5.97	9.1	С	50.1	63	С