

Rating form completed by:

RICHARD NIEWIAROWSKI Evaluator: RWN Date: 07/22/19

Text in green is to be part of UCSF building database and may be part of UCOP database.

DATE: 07-22-2019 (Group 1 Building Assessment was performed in December, 2018)

UCSF building seismic ratings Mt. Zion Cancer Research

CAAN #2037

2340 Sutter Street, San Francisco, CA 94115 UCSF Campus: Mt. Zion Hospital

Plan

West elevation of South Section (looking northeast)

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	IV	Based on drawings review and ASCE 41 Checklists & quick checks ¹ .
Rating basis	Tier 1	ASCE 41-17
Date of rating	Dec., 2018	
Recommended UCSF priority category for retrofit	None	Priority A=Retrofit ASAP Priority B=Retrofit at next permit application for modification
Ballpark total project cost to retrofit to IV rating	N/A	
Is 2018-2019 rating required by UCOP?	Yes	
Further evaluation recommended?	No	

Building information used in this evaluation

- Structural drawings, prepared by Rutherford & Chekene, dated February 28, 1994.
- Previous report: "UCSF Building Seismic Survey and Ratings" by UCSF SRC, dated 2013-10-07 (43 pages).

Additional building information known to exist

• Architectural drawings prepared by SMP, dated 2/28/1994.

Scope for completing this form

Review of previous UCSF/SRC report. Review of Structural and Architectural drawings. A site visit was made on 10/09/2018. Discussion of appropriateness and effectiveness of the steel SMRF beam-column welded connections with Tom Sabol & Mark Saunders on 10/10/2018.

Brief description of structure

The structure is a $\pm 109,670$ GSF, steel framed building designed in 1994 (construction completed in 1996), with four stories plus significant roof penthouses above grade and one basement level below grade. First story height (18 feet) is taller than upper three stories (15 feet). The rectangular shaped overall footprint is divided into three sections; two 86' x 116' sections north and south of a 24' x 42' central section; separated by 10" seismic separation joints.

<u>Structural System for vertical (gravity) load</u>: Steel framed system of wide-flanged beams, girders, and columns supporting concrete filled composite metal deck floors and roof. Basement perimeter walls are reinforced concrete retaining walls. Exterior cladding composed of EIFS panels and glass curtain walls.

<u>Foundation system</u>: Shallow isolated spread footings at interior columns and continuous strip footings at basement retaining walls. Footings are linked with interconnecting grade beams at SMRF frame lines.

<u>Structural System for lateral forces</u>: Reinforced concrete filled composite metal deck roof and floor diaphragms supported by a steel SMRF system above grade with concrete shear walls in the basement level. The final design of the SMRF was in progress when the Northridge EQ occurred (1/17/94). The beam-column connections were revised and improved to include: tapered cover plates at T&B flanges ($t_p \le t_f$), CJP welded beam web-to-column flange, removal of top and bottom back-up bars, flange welds back-gouged and fillet welded, and seal welds provided at the intersection of the cover plate and the flange to reduce the chance of stress concentration due to the notch. Although a cover plated connection was not ultimately selected as a pre-qualified connection, they were considered in FEMA 267 and FEMA 350, and are likely to be able to satisfy plastic rotation and drift criteria.

<u>Building code</u>: The structural design drawings are dated 28 February, 1994. The 1991 UBC was the code governing the structural design.

Building condition: Excellent.

Building response in 1989 Loma Prieta Earthquake: Not applicable.

Brief description of seismic deficiencies and expected seismic performance including mechanism of nonlinear response and structural behavior modes

The SMRF system is non-compliant in two conditions of the ASCE 41-17 SMRF (S1) checklist:

1. The quick-check calculated drift ratio is non-compliant ($D_r = 0.04 > 0.30$) at the tall ground floor level in the east-west direction. However, the calculated drift ratio is compliant at all upper levels in the east-west direction and at all levels in the north-south direction.

2. The quick-check calculated axial column stress caused by overturning is non-compliant at the north south direction frames ($f_a = 24.6 \text{ ksi} \ge 15.0 \text{ ksi}$). However, the calculated overturning axial stress at eastwest direction frames is compliant ($f_a = 10.8 \text{ ksi} \le 15.0 \text{ ksi}$) and the quick-check calculated column axial stress due to gravity loads is very low ($f_a \le 2.4 \text{ ksi} \le 5.0 \text{ ksi}$).

Based on discussions with Tom Sabol and Mark Saunders, the SMRF beam-column connections are expected to perform in a ductile manner in a major earthquake.

A small two- or three-story wood frame residential building abuts the northeast side of the north section of the building and an 8-story or taller existing building abuts the west face of the central section of the building. There are no connections to the adjacent buildings as floors do not align. The 10" seismic joints between the three

separate building sections are likely sufficient to prevent pounding, but the separation joints at the adjacent buildings are not likely large enough to prevent pounding of blank wall faces.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?	
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	Y	Openings at shear walls (concrete or masonry)	N	
Load path	N	Liquefaction	N	
Adjacent buildings	Y	Slope failure	N	
Weak story	N	Surface fault rupture	N	
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N	
Geometry (vertical irregularities)	N	URM wall height-to-thickness ratio	N	
Torsion	N	URM parapets or cornices	N	
Mass – vertical irregularity	Ν	URM chimney	N	
Cripple walls	N	Heavy partitions braced by ceilings	N	
Wood sills (bolting)	N	Appendages	N	
Diaphragm continuity	N			

Summary of review of nonstructural life-safety concerns, including at exit routes.¹

Only exterior cladding (EIFS & glass curtain walls) was reviewed for non-structural life-safety hazards. Based on site visit observations and review of the drawings, the exterior cladding is anchored to the back-up metal stud framing and structural elements of the building, and does not represent a falling hazard.

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None observed	Unrestrained hazardous materials storage	None observed
Heavy masonry or stone veneer above exit ways and public access areas	None observed	Masonry chimneys	None observed
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	None observed	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	None observed

Basis of Seismic Performance Level rating

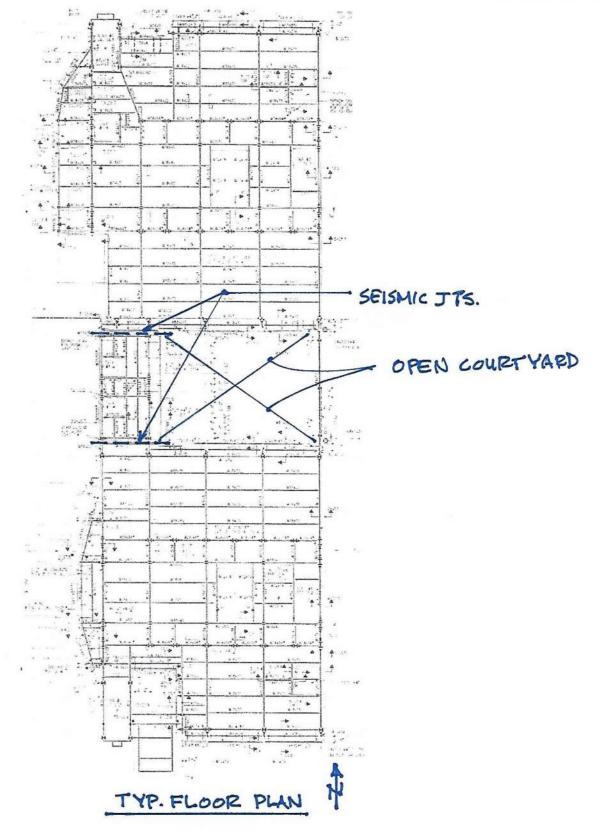
Although the ASCE 41-17 quick-check calculations are non-compliant in two conditions, neither deficiency is considered serious enough to warrant a rating of V. Regarding the non-compliant drift check in the east-west direction, the SMRF system and its beam-column connections are essentially post-Northridge compliant and are likely to perform in a ductile manner in a major earthquake, and the likely pounding against the adjacent buildings is not likely to result in significant structural damage at the impacted surfaces. Regarding the non-compliant column axial stress check, the gravity axial stresses are extremely light and the higher than desired overturning demand is not likely to result in column failure. Therefore, the seismic performance expected to occur in a major earthquake is consistent with a rating of IV.

Recommendations for further evaluation or retrofit

No further evaluation or retrofit is recommended.

¹ For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where nonstructural hazards may occur.

Peer review comments on rating


The four structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation in December, 2018 and were unanimous that the Seismic Performance Level Rating is Level IV and no further study is required.

attitude37.785band Geohazards, Egan (2019)ongitude-122.4389UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)wre there other structures besides his one under the same CAAN#NoSignificant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) below lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) below lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) below lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Stories (basements) below lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Stories (basements) below lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Stories (basements) below lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Stories (basements) building structural height, hn62.5 ftASCE 7-16 Section 11.2Storieftcient for period, G0.80ASCE 41-17 Section 4.4.2.4Storiet for period, β0.80ASCE 41-17 Section 4.4.2.4Storiet for period, β0.80UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Store and sect saisGeotechUCSF Group 1 Bu	Additional building data	Entry	Notes
ongitude-122.4389and Geohazards, Egan (2019)are there other structures besides his one under the same CAAN#NoNumber of stories above lowest serimeter grade4Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) below lowest perimeter grade1Juilding occupiable area (OGSF)109,670UCSF DataNumber of stories (basements) below lowest perimeter grade1Juilding occupiable area (OGSF)109,670UCSF DataNumber of stories (basements) below lowest perimeter grade1Juilding occupiable area (OGSF)109,670UCSF DataNumber of stories (basements) below lowest perimeter grade1Juilding occupiable area (OGSF)109,670UCSF DataSuilding structural height, hn62.5 ftASCE 41-17 Section 11.2Coefficient for period, <i>G</i> 0.035ASCE 41-17 Section 4.4.2.4Coefficient for period, <i>β</i> 0.80ASCE 41-17 Section 4.4.2.4Coefficient for period, <i>β</i> 0.80ASCE 41-17 Section 4.4.2.4T75 year hazard parameters S ₂ , S ₂ 1.430g, 0.557gSEAOC/OSHPD Seismic Design Maps ToolUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site classDUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)W = 5120 kips, V base = 5172 kipsSina duiding period0.97gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Sign basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Latitude	37.7856	UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
NoNoNumber of stories above lowest perimeter grade4Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) pelow lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) pelow lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) pelow lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) pelow lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) pelow lowest perimeter grade1Significant roof equipment and associated screens exist on the north and south sections.Number of stories (basements) bits Category per 2016 CBC 1604.5IIIUCSF Factor 11.2Scefficient for period, C coefficient for period, β0.80ASCE 41-17 Section 4.4.2.4Stefficient for period, β0.80ASCE 41-17 Section 4.4.2.4Stefficient for period, β0.80ASCE 41-17 Section 4.4.2.4Stefficient for period, β0.80ASCE 41-17 Section 11.2Stefficient for period0.96 secEstimated using ASCE 41-17 equation 4-4Stefficient for period0.97 sSEAOC/OSHPD Seismic Design Maps ToolStefficient for period0.97 sSEAOC/OSHPD Seismic Design Maps ToolStefficient for period0.97 s <td< td=""><td>Longitude</td><td>-122.4389</td><td>UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)</td></td<>	Longitude	-122.4389	UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
Perimeter grade4exist on the north and south sections.Number of stories (basements) below lowest perimeter grade1Suilding occupiable area (QGSF)109,670UCSF DataNumber of stories (basements) below lowest perimeter grade1Suilding occupiable area (QGSF)109,670UCSF DataSuilding structural height, hn62.5 ftASCE 7-16 Section 11.2Coefficient for period, Ct0.035ASCE 41-17 Section 4.4.2.4Coefficient for period, β0.80ASCE 41-17 Section 4.4.2.4Coefficient for period, β0.80ASCE 41-17 Section 4.4.2.4Stated dundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Site dataUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site classDUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsSite V300305 m/sUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsSite V300305 m/sUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, Egan (2019)Iquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W CSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Iquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Iquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics a	Are there other structures besides this one under the same CAAN#	No	
below lowest perimeter grade1Building occupiable area (OGSF)109,670UCSF DataBuilding structural height, hn62.5 ftASCE 7-16 Section 11.2Building structural height, hn62.5 ftASCE 41-17 Section 4.4.2.4Coefficient for period, Ct0.035ASCE 41-17 Section 4.4.2.4Coefficient for period, β0.80ASCE 41-17 Section 4.4.2.4Estimated fundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Building structural height, hn62.5 ftSEAOC/OSHPD Seismic Design Maps ToolStree dataDUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stee datsGeotech ParametersUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stee datsJustice datsUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stea basisGeotech Parameters F _a , F _v 1.430g, 0.970gStea basisJustice dataUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stea basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stase basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stase basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stase basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Stase basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohaz	Number of stories above lowest perimeter grade	4	
Nisk Category per 2016 CBC 1604.5IIIBuilding structural height, h_n 62.5 ftASCE 7-16 Section 11.2Coefficient for period, C_t 0.035ASCE 41-17 Section 4.4.2.4Coefficient for period, β 0.80ASCE 41-17 Section 4.4.2.4Stimated fundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Site data V V D75-year hazard parameters S_s , S_2 1.430g, 0.557gSEAOC/OSHPD Seismic Design Maps ToolSite classD U CSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F_o, F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolGround motion parameters S_{cs}, S_{c1} 1.430g, 0.970gand Geohazards, Egan (2019)Site V_{s30} 0.97gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site V_{s30} 305 m/sUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site V_{s30}305 m/sUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Active fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Active fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Number of stories (basements) below lowest perimeter grade	1	
Building structural height, h_n 62.5 ftASCE 7-16 Section 11.2Coefficient for period, C_t 0.035ASCE 41-17 Section 4.4.2.4Coefficient for period, β 0.80ASCE 41-17 Section 4.4.2.4Estimated fundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Site data0.96 secEstimated using ASCE 41-17 equation 4-4V75-year hazard parameters S_s , S_1 1.430g, 0.557gSEAOC/OSHPD Seismic Design Maps ToolSite classDUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F_a , F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolSocum motion parameters S_{cs} , S_{c1} 1.430g, 0.970gand Geohazards, Egan (2019)Site V_{s30} 0.97gand Geohazards, Egan (2019)Site V_{s30} 305 m/sUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics 	Building occupiable area (OGSF)	109,670	UCSF Data
Coefficient for period, C_t 0.035ASCE 41-17 Section 4.4.2.4Coefficient for period, β 0.80ASCE 41-17 Section 4.4.2.4Estimated fundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Site dataUSFSEAOC/OSHPD Seismic Design Maps ToolIf e classDUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)If e parameters F_a, F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Ground motion parameters S_{cs}, S_{c1} 1.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Ground motion parameters S_{cs}, S_{c1} 1.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Gra at building period0.97g0.97gGroup 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Iquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)andslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Active fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Active fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Risk Category per 2016 CBC 1604.5	Ш	
Coefficient for period, β 0.80ASCE 41-17 Section 4.4.2.4Estimated fundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Site dataV75-year hazard parameters S_s , S_1 1.430g, 0.557gSEAOC/OSHPD Seismic Design Maps ToolSite classDSite class basisGeotech ParametersUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F_a , F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolSite parameters F_a , F_v 1.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsSide V_{s30} 0.97gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsSiquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W CSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Siquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019	Building structural height, hn	62.5 ft	ASCE 7-16 Section 11.2
Estimated fundamental period0.96 secEstimated using ASCE 41-17 equation 4-4Site dataV75-year hazard parameters S ₅ , S ₂ 1.430g, 0.557gSEAOC/OSHPD Seismic Design Maps ToolSite classDUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F _a , F _v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolSite parameters F _a , F _v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolSite parameters F _a , F _v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site V _{s30} 0.97g305 m/sV _{s30} basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Licuefactive fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Coefficient for period, Ct	0.035	ASCE 41-17 Section 4.4.2.4
iite data 075-year hazard parameters S _s , S ₁ 1.430g, 0.557g SEAOC/OSHPD Seismic Design Maps Tool iite class D D iite class D UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) iite parameters F _a , F _v 1.000, 1.743 SEAOC/OSHPD Seismic Design Maps Tool UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) Ground motion parameters S _{cs} , S _{c1} 1.430g, 0.970g and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kips W = 5120 kips, V base = 5172 kips Ga at building period 0.97g UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) Ga at building period 0.97g UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) UcsF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) iquefaction potential/basis No UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) a.andslide potential/basis No UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) Active fault-rupture hazard No UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Coefficient for period, eta	0.80	ASCE 41-17 Section 4.4.2.4
DifferenceSecond Parameters Sec, Second Parameters Second Parameters1.430g, 0.557gSEAOC/OSHPD Seismic Design Maps ToolSite classDSite class basisGeotech ParametersUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F_a , F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolSite parameters F_a , F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolScound motion parameters S_{cs} , S_{cl} 1.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsSite V_{s30} 305 m/sUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, ClassSiquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefactive fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Estimated fundamental period	0.96 sec	Estimated using ASCE 41-17 equation 4-4
DDSite classDSite class basisGeotech ParametersUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F_a, F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolGround motion parameters S_{cs}, S_{c1} 1.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kips G_a at building period0.97gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kips G_{a} at building period0.97gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kips G_{a} at building period0.97gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefactive fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Site data		
Geotech ParametersUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Site parameters F_a , F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolGround motion parameters S_{cs} , S_{c1} 1.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsGa at building period0.97g 305 m/sW = 5120 kips, V base = 5172 kips V_{s30} basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019	975-year hazard parameters S_s , S_1	1.430g, 0.557g	SEAOC/OSHPD Seismic Design Maps Tool
Parametersand Geohazards, Egan (2019)Site parameters F_a, F_v 1.000, 1.743SEAOC/OSHPD Seismic Design Maps ToolGround motion parameters S_{cs}, S_{c1} 1.430g, 0.970gand Geohazards, Egan (2019)Ground motion parameters S_{cs}, S_{c1} 1.430g, 0.970gand Geohazards, Egan (2019) $W = 5120$ kips, V base = 5172 kips $W = 5120$ kips, V base = 5172 kips G_a at building period0.97g $W = 5120$ kips, V base = 5172 kips G_a at building period0.97g $UCSF$ Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) V_{s30} basisEstimated $UCSF$ Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNo $UCSF$ Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNo $UCSF$ Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNo $UCSF$ Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Active fault-rupture hazardNo $UCSF$ Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Site class	D	
Ground motion parameters Scs, Sc11.430g, 0.970gUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsSa at building period0.97gSite Vs30305 m/sVs30 basisEstimatedLiquefaction potential/basisNoNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoLiquefaction potential/basis	Site class basis		UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
Ground motion parameters Scs, Sc11.430g, 0.970gand Geohazards, Egan (2019) W = 5120 kips, V base = 5172 kipsGra at building period0.97gGra at building period0.97gSite Vs30305 m/sVs30 basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoLiquefaction potential/basisNoLiquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics 	Site parameters F_a , F_v	1.000, 1.743	SEAOC/OSHPD Seismic Design Maps Tool
Site Vs30305 m/sVs30 basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Landslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Landslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Landslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Lative fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	Ground motion parameters S_{cs} , S_{c1}	1.430g, 0.970g	
Vs30 basisEstimatedUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Liquefaction potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Landslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Landslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Landslide potential/basisNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)Lative fault-rupture hazardNoUCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)	S_a at building period	0.97g	
Active fault-rupture hazardEstimatedand Geohazards, Egan (2019)InductorInduct	Site V _{s30}	305 m/s	
and Geohazards, Egan (2019) andslide potential/basis No UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019) Active fault-rupture hazard No UCSF Group 1 Buildings Geotechnical Characteristics	V _{s30} basis	Estimated	UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
Active fault-rupture hazard No UCSF Group 1 Buildings Geotechnical Characteristics	Liquefaction potential/basis	No	UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
NO . C	Landslide potential/basis	No	UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
	Active fault-rupture hazard identified at site?	No	UCSF Group 1 Buildings Geotechnical Characteristics and Geohazards, Egan (2019)
ite-specific ground motion study? No	Site-specific ground motion study?	No	

Applicable code		
Applicable code or approx. date of original construction	CBC 1991	SMRF connections were revised and improved post- Northridge EQ (see Bldg. description above).
-		Construction completed in 1996.
Applicable code for partial retrofit	None	No prior partial retrofit known
Applicable code for full retrofit	None	No prior full retrofit known
Model building data		
Model building type North-South	S1	Steel SMRF with rigid diaphragms
Model building type East-West	S1	Steel SMRF with rigid diaphragms
FEMA P-154 score	N/A	ASCE 41 Tier 1 evaluation was performed instead.
Previous ratings		
Most recent rating	IV	By UCSF Seismic Review Committee; as part of 2013 campus Buildings Rating Program
Date of most recent rating	2013	"UCSF Building Seismic Survey and Ratings"
2 nd most recent rating		
Date of 2 nd most recent rating		
3 rd most recent rating		
Date of 3 rd most recent rating		
Appendices		
ASCE 41 Tier 1 checklist included		
here?		
	Yes	Refer to attached checklist file

Appendix A

Additional Images

UCSF building seismic ratings Mt. Zion Cancer Research Building, 2340 Sutter St., CAAN #2037

Appendix B

ASCE 41-17 Tier 1 Checklists (Structural)

UC Campu	S: Mount Zion Hosp	pital	Date:		12/21/2018	
Building CAAN	N: 2037 Auxiliary CAAN: By Firm: Richard Niewiarowski,				ski, SE	
Building Name			Initials:	RWN	Checked:	
Building Addres	ss: 2340 Sutter Street, San Francisco, CA Page: 1 of 3					
C	AS ollapse Prevention B	CE 41-17 Basic Configu	iration	Check	list	
LOW SEISM	CITY					
BUILDING SYS	TEMS - GENERAL					
		Descriptio	on			
C NC N/A U	LOAD PATH: The structure contains a c that serves to transfer the inertial force					
	(Commentary: Sec. A.2.1.1. Tier 2: Sec. \$	5.4.1.1)				
	Comments:					
C NC N/A U	ADJACENT BUILDINGS: The clear dista	ance between the buildin	g being evalu	ated and an	y adjacent buildi	ng is greater
	than 0.25% of the height of the short seismicity. (Commentary: Sec. A.2.1.2. T	ter building in low seism				
	Comments:					
C NC N/A U	MEZZANINES: Interior mezzanine level seismic-force-resisting elements of the m					hored to the
	Comments:				,	
BUILDING SYS	TEMS - BUILDING CONFI	GURATION				
		Descriptio	on			
C NC N/A U	WEAK STORY: The sum of the shear st	•				rection is not
	less than 80% of the strength in the adjac	cent story above. (Comme	entary: Sec. A2	2.2.2. Tier 2:	Sec. 5.4.2.1)	
	Comments:					
C NC N/A U	SOFT STORY: The stiffness of the seisn resisting system stiffness in an adjacen					
	stiffness of the three stories above. (Com	nmentary: Sec. A.2.2.3. Ti	er 2: Sec. 5.4.	2.2)		
	Comments:					
C NC N/A U	VERTICAL IRREGULARITIES: All ver	tical elements in the s	eismic-force-r	esistina svo	stem are contin	uous to the
	foundation. (Commentary: Sec. A.2.2.4. 1			coloung ay		
	Comments:					

UC Campus:	Mount Zion Hospital		Date:	12/21/2018		
Building CAAN:	2037	Auxiliary CAAN:	By Firm:	irm: Richard Niewiarowski, SE		
Building Name:	Mt. Zion Cance	er Research	Initials:	RWN	Checked:	
Building Address:	2340 Sutter Street, S	an Francisco, CA	Page:	2	of	3
ASCE 41-17 Collapse Prevention Basic Configuration Checklist C NC N/A U GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more th 30% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2) Tier 2: Sec. 5.4.2.4) Comments:						
	ASS: There is no change in effect nezzanines need not be considered Comments: ORSION: The estimated distance ne building width in either plan dime Comments:	d. (Commentary: Sec. A.2 between the story center	2.6. Tier 2: Sec. 5.	4.2.5)		

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

			Description
C C	N/A	-	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2m) under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) Comments: Liquefaction potential of site soils is moderate, but risk to building is likely to be very low.
C	N/A	-	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments:
C C	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) Comments:

UC Campus	S: Mount Zior	n Hospital	Date:	12/21/2018				
Building CAAN	l: 2037	Auxiliary CAAN:	By Firm:	Richard Niewiarowski, SE				
Building Name	e: Mt. Zion Canc	er Research	Initials:	RWN	Checked:			
Building Address	S: 2340 Sutter Street, S	San Francisco, CA	Page:	3	of	3		
C	ASCE 41-17 Collapse Prevention Basic Configuration Checklist							
	HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)							
FOUNDATION	CONFIGURATION							
		Desci	ription					
C NC N/A U	OVERTURNING: The ratio of the to the building height (base/height)					ndation level		
C NC N/A U	TIES BETWEEN FOUNDATION E piles, and piers are not restrained A.6.2.2. Tier 2: Sec. 5.4.3.4) Comments:							

UC Campus:	Mt. Zio	n Hospital	Date:	12/13/2018			
Building CAAN:	2037 Auxiliary CAAN: By Firm: Rid				Richard Niewiarowski, S.E		
Building Name:	Mt. Zion Ca	ncer Research	Initials:	RWN	Checked:		
Building Address:	2340 Sutter Street, S	an Francisco, CA 94115	Page:	1	of	4	
ASCE 41-17							

Collapse Prevention Structural Checklist For Building Type S1-S1A

LOW SEISMICITY

SEISMIC-FORCE-RESISTING SYSTEM

				Description
		N/A	-	REDUNDANCY: The number of lines of moment frames in each principal direction is greater than or equal to 2. (Com- mentary: Sec. A.3.1.1.1. Tier 2: Sec. 5.5.1.1) Comments:
		N/A	-	DRIFT CHECK: The drift ratio of the steel moment frames, calculated using the Quick Check procedure of Section 4.4.3.1, is less than 0.030. (Commentary: Sec. A.3.1.3.1. Tier 2: Sec. 5.5.2.1.2) Comments: Quick-check calculation for drift is N/C only for drift in the east-west direction at the tall ground floor level (Dr = 0.040 \geq 0.030). The calculated drift ratio is compliant at all upper levels in the east-west direction and at all levels in the north-south direction.
		N/A	-	COLUMN AXIAL STRESS CHECK: The axial stress caused by gravity loads in columns subjected to overturning forces is less than $0.10F_y$. Alternatively, the axial stress caused by overturning forces alone, calculated using the Quick Check procedure of Section 4.4.3.6, is less than $0.30F_y$. (Commentary: Sec. A.3.1.3.2. Tier 2: Sec. 5.5.2.1.3) Comments: Quick-check calculation of gravity axial stress is Compliant (fa = 2.5 ksi \leq 5.0 ksi. Quick-check calculation of overturning axial stress is Compliant in the east-west direction frames (fa = 10.8 ksi \leq 15.0 ksi), but is N/C in the north-south direction frames (fa = 24.6 ksi \geq 15.0 ksi).
		N/A	-	FLEXURAL STRESS CHECK: The average flexural stress in the moment frame columns and beams, calculated using the Quick Check procedure of Section 4.4.3.9, is less than F_{y} . Columns need not be checked if the strong column–weak beam checklist item is compliant. (Commentary: Sec. A.3.1.3.3. Tier 2: Sec. 5.5.2.1.2) Comments: Quick-check calculations for flexural stresses are compliant for moment frame columns and beams in both directions at all levels (f _{max} = 24.7 ≤ 50.0 ksi).
CON	INE	CTI	ON	S
				Description
C N		N/A		TRANSFER TO STEEL FRAMES: Diaphragms are connected for transfer of seismic forces to the steel frames. (Commentary: Sec. A.5.2.2. Tier 2: Sec. 5.7.2) Comments:

UC Campus:	Mt. Zio	Date:	12/13/2018					
Building CAAN:	2037	Auxiliary CAAN:	By Firm:	Richard	Richard Niewiarowski, S.E.			
Building Name:	Mt. Zion Ca	ncer Research	Initials:	RWN	Checked:			
Building Address:	2340 Sutter Street, Sa	2340 Sutter Street, San Francisco, CA 94115			of	4		
ASCE 41-17								

Collapse Prevention Structural Checklist For Building Type S1-S1A

LOW SEISMICITY

SEISMIC-FORCE-RESISTING SYSTEM

C NC N/A U

STEEL COLUMNS: The columns in seismic-force-resisting frames are anchored to the building foundation. (Commentary: Sec. A.5.3.1. Tier 2: Sec. 5.7.3.1)

Comments:

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

SEISMIC-FORCE-RESISTING SYSTEM

	Description
C NC N/A U	REDUNDANCY: The number of bays of moment frames in each line is greater than or equal to 2. (Commentary: Sec. A.3.1.1.1. Tier 2: Sec. 5.5.1.1) Comments:
C NC N/A U	INTERFERING WALLS: All concrete and masonry infill walls placed in moment frames are isolated from structural elements. (Commentary: Sec. A.3.1.2.1. Tier 2: Sec. 5.5.2.1.1) Comments:
C NC N/A U	MOMENT-RESISTING CONNECTIONS: All moment connections can develop the strength of the adjoining members based on the specified minimum yield stress of steel. (Commentary: Sec. A.3.1.3.4. Tier 2: Sec. 5.5.2.2.1). Comments:

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)

SEISMIC-FORCE-RESISTING SYSTEM

Description

UC Camp	us: Mt. Zion Ho	ospital	Date:		12/13/2018	
Building CAA	N: 2037	Auxiliary CAAN:	By Firm:	Richard	l Niewiarows	ski, S.E.
Building Nan	ne: Mt. Zion Cancer	r Research	Initials:	RWN	Checked:	
Building Addre	SS: 2340 Sutter Street, San F	Francisco, CA 94115	Page:	3	of	4
Collapse	Prevention Structu	ASCE 41-17 ral Checklist F	or Build	ding T	ype S1-S	51A
C NC N/A U	MOMENT-RESISTING CONNECTION members or panel zones based on 11 A3.2. (Commentary: Sec. A.3.1.3.4. Ti	10% of the expected yield str ier 2: Sec. 5.5.2.2.1)	ess of the stee	el in accorda	ince with AISC 3	41, Section
	Comments: The beam-column although they are not one of t in FEMA 267 and FEMA 350, a As such, they are presumed members.	the pre-approved types and are likely to be able	to satisfy	selected, plastic rot	they were co ation and drif	onsidered t criteria.
C NC N/A U	PANEL ZONES: All panel zones have sum of the flexural strengths of the gire 5.5.2.2.2)					
	Comments: The beam-column although they are not one of t in FEMA 267 and FEMA 350, a As such, they are presumed c ofm girders framing into the c	the pre-approved types and are likely to be able capable of developing 0	ultimately to satisfy p	selected, plastic rot	they were co ation and drif	onsidered t criteria.
C NC N/A U	COLUMN SPLICES: All column splice the web. (Commentary: Sec. A.3.1.3.6 Comments:		esisting frames	s include cor	nnection of both	flanges and
CNCN/AU	STRONG COLUMN—WEAK BEAM: moment frames is greater than 50%. (Comments:	The percentage of strong co Commentary: Sec. A.3.1.3.7.	olumn–weak b Tier 2: Sec. 5.	eam joints ir 5.2.1.5)	n each story of e	each line of
CNCN/AU	COMPACT MEMBERS: All frame ele moderately ductile members. (Comme Comments:				AISC 341, Tab	le D1.1, for
DIAPHRAGMS	(STIFF OR FLEXIBLE)					
		Descriptio	n			
C NC N/A U	OPENINGS AT FRAMES: Diaphragm total frame length. (Commentary: Sec. Comments:			nent frames	extend less than	25% of the

UC Campus:	Mt. Zion Hospital			12/13/2018			
Building CAAN:	2037	2037 Auxiliary CAAN: By Firm: Richard Niewiarowsk			ski, S.E.		
Building Name:	Mt. Zion Can	Initials:	RWN	Checked:			
Building Address:	2340 Sutter Street, Sa	Page:	4	of	4		
	ASCE 41-17						

Collapse Prevention Structural Checklist For Building Type S1-S1A

FLEXIB	LE DIA	PHRAGMS
		Description
	-	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2) Comments:
	_	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments:
	N/A U C	SPANS: All wood diaphragms with spans greater than 24 ft (7.3 m) consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) Comments:
	N/AU	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than 40 ft (12.2 m) and aspect ratios less than or equal to 4-to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) Comments:
	N/A U E E	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5) Comments:

Appendix C

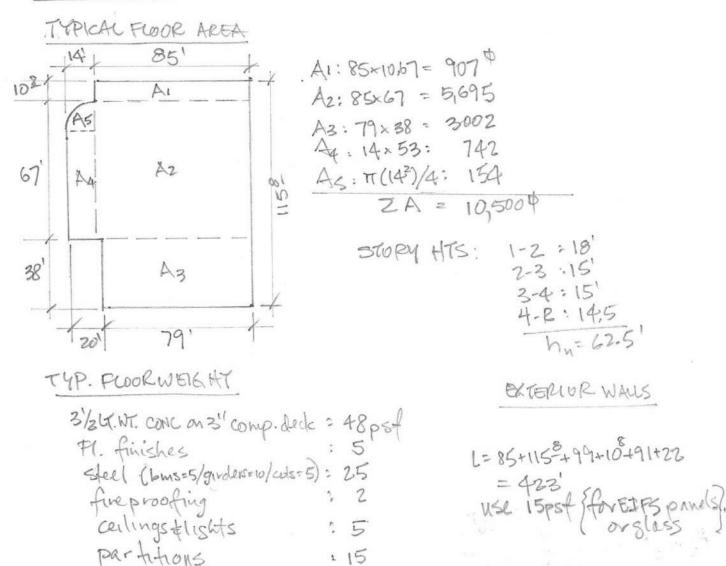
UCOP Seismic Safety policy Falling Hazards Assessment Summary

UC Campus:	UCSF Mount Zion			07/24/2019			
Building CAAN:	2037 Auxiliary CAAN:			Richard Niewiarowski			
Building Name:	Mt. Zion Can	Initials:	RWN	Checked:			
Building Address:	2340 Sutter Street, Sa	Page:	1	of	1		
UCOP SEISMIC SAFETY POLICY Falling Hazard Assessment Summary							

	Description
P N/A	Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate (50 ppl or more)
□ ⊠	Comments:
P N/A □ ⊠	Heavy masonry or stone veneer above exit ways or public access areas Comments:
P N/A □ ⊠	Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas Comments:
P N/A □ ⊠	Unrestrained hazardous material storage Comments:
P N/A	Masonry chimneys
□ ⊠	Comments:
P N/A	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.
□ ⊠	Comments:
P N/A	Other:
□ ⊠	Comments:
P N/A	Other:
□ ⊠	Comments:
P N/A	Other:
□ ⊠	Comments:

Falling Hazards Risk: Low

Appendix D


Quick Check Calculations

1946 Whitecliff Court Walnut Creek, CA 94596 Tel: (925) 937-0417 E: rwniew@yahoo.com

MT. ZLON CANCER RESEARCH 2340 SULTER ST., SF

81/5

NORTH SECTION (N&Ssections are essentially the same)

AT ROOF: Add 50psf on ±1/2 Anen => 500\$ 05\$ = 250K

15

Wf = 110pst

MEP/ equipment

1946 Whitecliff Court Walnut Creek, CA 94596 Tel: (925) 937-0417 E: rwniew@yahoo.com

Pg2/5

FLOOR WEIGHTS

1

i.

$$\begin{aligned} & \sum_{g \in 4-1} V = C S_{a} W & C = 1.0 \quad (T_{a} U_{a} \notin 4-7) \\ & (B \leq E - C/2E) : S_{a} = \frac{S_{c4}}{T} \leq S_{c5} & [S_{c5} = 1.43; S_{a} = 0.97] \\ & T_{a} = C_{4} h_{n}^{B} \quad (C_{4} = 0.035; B = 0.80; h_{n} = 62.5;] \\ & T_{a} = 0.965 \\ & S_{a} = \frac{0.97}{6.96} = 1.01 < 1.43 \\ & S_{a} = (1.019; N = (1.01)(5120) = 5172^{K} \end{aligned}$$

LEVEL	Ni	hi	hk	Wihi	Wh Zwit	Fi	Vi
R	1455	625	76,9	111,890	0.43	2.224	2224
4	1250	48	59,0	73,750	0.28	1448	3672
3	1250	33	40.6	50,750	0,19	983	4655
2	1165	18	22.1	25750	0.0	517	5172
	5120	Sidemont of	enneritä	262,140	1.00	5172	

dum that per 23. 4-2a: K=1.0+ (0.46/20)1.0=1.23

1946 Whitecliff Court Walnut Creek, CA 94596 Tel: (925) 937-0417 E: rwniew@yahoo.com

1946 Whitecliff Court Walnut Creek, CA 94596 Tel: (925) 937-0417 E: rwniew@yahoo.com

PS 4/5

NS EW Nc 8 12 ne 2 2 - lf Zc 418 320 X(2 220 3840 3344 305× 8 Zb 295×4 ZZL 4020 Ma(CP) 9.0 9,0

Plaxmal Stress (section 4.4,3,9) $z_{2} 4 - 14$; $f_{3}^{awg} = V_{i}(\frac{h_{a}}{h_{a}})(\frac{h_{e}}{h_{a}-h_{e}})(\frac{h_{i}}{h_{a$ EN Dir. (Level (-2) $f_{co|s}^{avg} = (5172) \binom{1}{9} \binom{12}{12-2} \binom{216}{2} \binom{1}{3840}$ $= 19.4^{\text{Ksi}} < 50$ $\int_{\text{bms}}^{\text{aug}} = (5172)(\frac{1}{9})(\frac{12}{12-2})(\frac{216}{2})(\frac{1}{5588})$ = 13,3 KGi 250

NS (Level 1-2)

$$f_{cols}^{avg} = (5172)(\frac{1}{9})(\frac{8}{8-2})(\frac{216}{2})(\frac{1}{3344})$$

 $= 24.7^{ksi}$ <50
Pavg = 2.4.84

Gravity (Deadload) Check for SMRF cols. (ignore LL)
Trib. Area (max) =
$$(\frac{32.5+8.67}{2})(10.83) = 2124$$

Por $(212)(110x4+50) = 104^{4}$
for with x176 col: $f_a = \frac{104}{51.8} = 2.0$ Ksi (25)
for with x176 col: $f_a = \frac{104}{43.0} = 2.4$ esi (25)

1946 Whitecliff Court Walnut Creek, CA 94596 Tel: (925) 937-0417 E: rwniew@yahoo.com

PJ 5/5

Check Drift e upper-floor level (h=15.0') $D_{r_{ew}} = \left(\frac{20.77 + 11.89}{20.77 \times 11.89}\right) \left(\frac{180}{12 \times 29000}\right) (431) = k_{e} = 20.77$ K=2140/15x12=11.89 = 0.029 2 0.030/

Based on Quick-check calculations, The SMRF structure is non-compliant in two chedes: 1) Drift in E-W direction @ Level 1-2 = Dr = 0.0470.03 2) Column-Axial overfurning stress in N-S direction: Pot=24.6" > 15.0 (0.354)