Text in green is to be part of UCSF building database and may be part of UCOP database

4-8-2020

UCSF Building Seismic Ratings

$13383^{\text {RD }}$ AVENUE
CAAN \#2271
$13383^{\text {rd }}$ AVENUE, SAN FRANCISCO, CA 94122

UCSF Campus: Parnassus

Plan

West Elevation

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	V	Findings based on drawing review and ASCE 41-17 Tier 1
evaluation		

[^0]
Building information used in this evaluation

- Architectural Floor Plans by Standard Fire Protection, Inc., "Fire Protection Sprinkler System," dated 17 July 1978 (1 Sheet)
- Architectural Drawings by Scheinhotz Associates and VDK Architects, "UCSF Housing $13383^{\text {rd }}$ Ave. San Francisco, CA," dated 19 August 1988 (5 sheets).

Scope for completing this form

Architectural drawings were reviewed and an ASCE 41-17 Tier 1 evaluation was performed. A site visit was made on December 5, 2019 where the building exterior and basement were observed. Access to the upper floors was not available.

Brief description of structure

The building functions as graduate student housing. It was reportedly built in 1913 as a single-family home. There is a 6-bedroom apartment on the first and second floors over a basement with garage. The main floor plate is approximately 42 ft north-south by 25 ft east-west.
Identification of Levels: Levels are identified on plan as Basement, First Floor, Second Floor, and Roof. The site slopes downward toward the north. The basement (approximately $9^{\prime}-0^{\prime \prime}$) contains a garage to the west and utilities and laundry to the east. The first floor (approximately $10^{\prime}-9^{\prime \prime}$) consists of a kitchen, living room, dining room, two bedrooms, bathroom, and foyer. The second floor (approximately $10^{\prime}-9^{\prime \prime}$) consists of four bedrooms and a bathroom. There is an attic space over the full building footprint. The roof is a gable/hip roof. The basement is at grade/street level and is used as the base of the building for this evaluation.

Foundation system: Existing foundation drawings are not available. It is presumed there are continuous footings below bearing walls. During the site visit on December 5, 2019 continuous concrete stem wall footings were observed around the ground floor level. The dining room on the first floor at the rear of the building is supported on wood posts on isolated footings at the two eastern-most corners.

Structural system for vertical (gravity) load: Drawings showing the existing framing are not available. It is presumed based on the age of the building that wood joists span to load bearing wood framed walls.

Structural system for lateral forces: Drawings showing the existing framing are not available. It is presumed based on the age of the building that a sheathed diaphragm distributes load to the interior and exterior wood framed walls sheathed with gypsum board and/or plaster. Diagonal sheathing was observed along the front (west) basement wall. There was a ceiling in the garage space, so it could not be determined if the sheathing in the first floor was straight or diagonal sheathing.

Building Code: The building was reportedly constructed in 1913, prior to a building code being enacted. However, no documentation was available to confirm the construction date.

Building Condition: What could be observed of the structure of the building appeared to be in fair condition; however, most of the structure was concealed behind finishes. The rear exterior wood siding and trim showed signs of water wicking. The concrete stem walls were poorly consolidated in many areas and some spalling was observed. The rear wood exterior patio and stairs were in good condition, including connector hardware.

Building response in 1989 Loma Prieta Earthquake: The report titled "Performance of UCSF Buildings During the October 17, 1989 Loma Prieta Earthquake" by Impell Corporation stated the exterior and interior of the building was inspected after the earthquake and no damage was observed.

Brief description of seismic deficiencies and expected seismic performance including structural behavior modes

- The building relies on interior and exterior walls for shear resistance. There is not enough wall present to pass the Tier 1 quick check in the transverse or longitudinal direction in any story.
- Based on the age of construction, the walls between levels are not expected to be detailed to transfer shear and overturning forces between levels.
- The building is located on a sloped site. However, there is a significant length of wall on the downhill side of the building.
- The building is built to the property line with virtually no separation between the neighboring buildings to the north and south. The floor levels do not align with the adjacent buildings due to the sloped site.
- The garage cripple walls were primarily sheathed with plaster and gypsum board. Diagonal sheathing was observed along the front (west) basement wall. No mudsill bolts were observed.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	Y	Openings at shear walls (concrete or masonry)	N
Load path	Y	Liquefaction	N
Adjacent buildings	Y	Slope failure	N
Weak story	Y	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	N	URM wall height-to-thickness ratio	N
Torsion	N	URM parapets or cornices	N
Mass - vertical irregularity	N	URM chimney	N
Cripple walls	Y	Heavy partitions braced by ceilings	N
Wood sills (bolting)	Y	Appendages	N
Diaphragm continuity	N		

Summary of review of non-structural life-safety concerns, including at exit routes. ${ }^{2}$

It appeared the chimney had been replaced with a sheet metal flue. The facilities maintenance technician assisting with the site visit noted that the units have fireplaces, but they had been blocked off.

The water heater in the basement is strapped to the wall and had flex connections to the gas line. Bracing of the furnace was not observed, but it did have flex connections as well.

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None Observed	Unrestrained hazardous materials storage	None
Heavy masonry or stone veneer above exit ways and public access areas	None Observed	Masonry chimneys	None Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas Observed
None Os water heaters, boilers, emergency generators, etc.	None		

Basis of Seismic Performance Level Rating

The length of wall in the subject building is well below the amount required by the ASCE 41 Tier 1 procedures, and connections between walls between levels of the building and to the foundation are not adequate for resisting seismic loading. The building is listed as Priority B because there is a relatively low risk to occupant life-safety posed by conventional wood-framed construction.

[^1]
Recommendations for further evaluation or retrofit

No further evaluation of this building is recommended. There is relatively low risk to occupant life-safety posed by this type of building based on historical performance of similar building types. It is recommended that work to improve the seismic performance of the building be included with any future renovation requiring a building permit.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on January 8, 2020 and are unanimous that the rating is V.

Additional building data	Entry	Notes
Latitude	37.76375	
Longitude	-122.45969	
Are there other structures besides this one under the same CAAN\#	No	
Number of stories above lowest perimeter grade	3	
Number of stories (basements) below lowest perimeter grade	0	
Building occupiable area (OGSF)	4,273	
Risk Category per 2016 CBC 1604.5	11	
Building structural height, h_{n}	35 ft	Structural height defined per ASCE 7-16 Section 11.2
Coefficient for period, C_{t}	0.02	Per ASCE 41-17 equation 4-4
Coefficient for period, β	0.75	Per ASCE 41-17 equation 4-4
Estimated fundamental period	0.288 sec	Per ASCE 41-17 equation 4-4
Site data		
975 yr hazard parameters S_{s}, S_{1}	1.548, 0.611	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Site class	C	
Site class basis	Geotech Parameters	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Site parameters F_{a}, F_{v}	1.200, 1.400	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Ground motion parameters $S_{c s}, S_{c 1}$	1.858, 0.855	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
S_{a} at building period	1.858	
Site $V_{s 30}$	490 m/s	
V_{530} basis	Geotech Parameters	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Liquefaction potential/basis	No	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Landslide potential/basis	No	UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)

Active fault-rupture hazard identified at site? Site-specific ground motion study?	No	
Applicable code	No	
Applicable code or approx. date of original construction Applicable code for partial retrofit	Built: 1913	Neported date, not confirmed
Applicable code for full retrofit	None	No partial retrofit known
Model building data	No full retrofit known	

Appendix A

Additional Images

Figure 1 - Basement/Garage Floor Plan

Figure 2 - First Floor Plan

PROPOSED SECOND FLOOR PLAN

Figure 3 - Second Floor Plan

EXISTING ATTIC PLAN

Figure 4 - Attic Floor Plan

Figure 5 - Building Separation to the North (Left) and South (Right)

Figure 6 -Diagonal Sheathing at West (Front) Wall

Figure 7 - Braced Water Heater in Basement

Figure 8 - Gas Furnace in Garage

Figure 9 - Concrete Condition in Basement

Figure 10 - Basement Post and Beam without Connector Hardware

Figure 11 - Exterior Finish Condition at Rear of Building

Figure 13 - Rear Stair Post Connector and Footing

Appendix B

ASCE 41-17 Tier 1 Checklists (Structural)

UC Campus:	San Francisco		Date:	4/8/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	$13383^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	1338 3 ${ }^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	1	of	3
ASCE 41-17						

LOW SEISMICITY

BUILDING SYSTEMS - GENERAL

	Description
$\begin{array}{cccc} \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & \bullet & C & C \end{array}$	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1) Comments: Based on the age of construction, it is presumed detailing does not provide transfer of forces between walls and between levels of the building.
$\begin{array}{cccc} C & N C & N / A & U \\ C & \bullet & C & C \end{array}$	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2) Comments: Buildings to the north and south are built to or close to the property line, with minimal separation from the subject building.
$\begin{array}{cccc} \mathbf{C} & \mathrm{NC} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3) Comments:

BUILDING SYSTEMS - BUILDING CONFIGURATION

| C NC N/A U | Description |
| :--- | :--- | :--- | :--- |
| WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not | |
| less than 80\% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1) | |
| Comments: | |
| In the transverse direction (north-south), the length of wall in the ground and second floors is 43% of the length of | |
| wall of the story above. | |

Note: C = Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable U = Unknown

UC Campus:		San Francisco		Date:	4/8/2020		
Building CAAN		2271	Auxiliary CAAN:	By Firm:	Estructure		
Building Name		$13383^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:		$13383^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	2	of	3
ASCE 41-17 Collapse Prevention Basic Configuration Checklist							
C NC N/A U C C O	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3) Comments: Some walls are discontinuous between the ground and first story. The dining room has no cripple walls and cantilevers off the main diaphragm.						
C NC N/A U	GEOMETRY: There are no changes in the net horizontal dimension of the seismic-force-resisting system of more than 30\% in a story relative to adjacent stories, excluding one-story penthouses and mezzanines. (Commentary: Sec. A.2.2.5. Tier 2 Sec. 5.4.2.4) Comments:						
C NC N/A U	MASS: There is no change in effective mass of more than 50% from one story to the next. Light roofs, penthouses, and mezzanines need not be considered. (Commentary: Sec. A.2.2.6. Tier 2: Sec. 5.4.2.5) Comments:						
C NC N/A U	TORSION: The estimated distance between the story center of mass and the story center of rigidity is less than 20% of the building width in either plan dimension. (Commentary: Sec. A.2.2.7. Tier 2: Sec. 5.4.2.6) Comments:						

MODERATE TO THE ITE	SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION S FOR LOW SEISMICITY)
GEOLOGIC SITE HAZARD	
	Description
$\begin{array}{llcc} \hline C & N C & N / A & U \\ C & C & C & O \end{array}$	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within $50 \mathrm{ft}(15.2 \mathrm{~m})$ under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) Comments:
$\begin{array}{llcc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments:

Note: C = Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable U = Unknown

UC Campus:	San Francisco		Date:	4/8/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:		Estructure	
Building Name:	$13383^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	$13383^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	3	of	3
ASCE 41-17						

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

| \mathbf{C} | $\mathbf{N C}$ | \mathbf{N} / \mathbf{A} | \mathbf{U} | SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) | | | | |
| Comments: | C | C | | |

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)	
FOUNDATION CONFIGURATION	
	Description
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & 0 & C \end{array}$	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6 S_{a}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3) Comments: $\begin{aligned} & 0.6 \mathrm{Sa}=0.6^{*} 1.86=1.12 \\ & \text { Base }=25 \mathrm{ft} \text { height }=35 \mathrm{ft} \\ & \text { Base/Height }=0.71<1.12 \end{aligned}$
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4) Comments: Site class C.

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

UC Campus:	San Francisco		Date:	1/2/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:		structure	
Building Name:	$1338{ }^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	1338 3 ${ }^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	1	of	4
ASCE 41-17						

LOW AND MODERATE SEISMICITY	
SEISMIC-FORCE-RESISTING SYSTEM	
	Description
$\begin{array}{cccc} \hline C & N C & \text { N/A } & \mathbf{U} \\ 0 & 0 & 0 & 0 \end{array}$	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Comments:
$\begin{array}{cccc} \hline C & N C & N / A & U \\ O & 0 & O & 0 \end{array}$	SHEAR STRESS CHECK: The shear stress in the shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the following values: (Commentary: Sec. A.3.2.7.1. Tier 2: Sec. 5.5.3.1.1) Comments: Other than the longitudinal direction of the second floor, none of the other levels and directions pass the quick check stress test. At the ground floor the wall stresses in the quick check are 543 plf in the east-west direction and 1,892 plf in the north-south direction compared with the allowable 200 plf.
$\begin{array}{cccc} \hline C & N C & \text { N/A } & \mathbf{U} \\ 0 & 0 & O & 0 \end{array}$	STUCCO (EXTERIOR PLASTER) SHEAR WALLS: Multi-story buildings do not rely on exterior stucco walls as the primary seismic-force-resisting system. (Commentary: Sec. A.3.2.7.2. Tier 2: Sec. 5.5.3.6.1) Comments:
$\begin{array}{cccc} \hline C & N C & N / A & U \\ O & 0 & O & 0 \end{array}$	GYPSUM WALLBOARD OR PLASTER SHEAR WALLS: Interior plaster or gypsum wallboard is not used for shear walls on buildings more than one story high with the exception of the uppermost level of a multi-story building. (Commentary: Sec. A.3.2.7.3. Tier 2: Sec. 5.5.3.6.1) Comments: Interior walls provide much of the shear resistance, particularly in the transverse (north-south) direction.
$\begin{array}{cccc} \hline C & N C & N / A & U \\ O & 0 & O & O \end{array}$	NARROW WOOD SHEAR WALLS: Narrow wood shear walls with an aspect ratio greater than 2-to-1 are not used to resist seismic forces. (Commentary: Sec. A.3.2.7.4. Tier 2: Sec. 5.5.3.6.1) Comments: Some of the walls considered for the quick check have an aspect ratio greater than 2 to 1 .
$\begin{array}{cccc} \hline C & \text { NC } & \text { N/A } & \text { U } \\ 0 & 0 & 0 & 0 \end{array}$	WALLS CONNECTED THROUGH FLOORS: Shear walls have an interconnection between stories to transfer overturning and shear forces through the floor. (Commentary: Sec. A.3.2.7.5. Tier 2: Sec. 5.5.3.6.2) Comments: Existing drawings showing wall details are not provided but it is presumed there are no ties between floors to transfer load between floors.

Note: C = Compliant NC = Noncompliant N/A = Not Applicable U = Unknown

UC Campus:	San Francisco		Date:	1/2/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	$13383^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	$13383^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	2	of	4
	tion St	Collapse Prevention Structural Checklist For Building Type W1-N1A			e W1-	

C NC N/A U	HILLSIDE SITE: For structures that are taller on at least one side by more than one-half story because of a sloping site, all shear walls on the downhill slope have an aspect ratio less than 1-to-1. (Commentary: Sec. A.3.2.7.6. Tier 2: Sec. 5.5.3.6.3) Comments: While the street in which the structure is located slopes, it does not appear the change in elevation across the transverse direction of the building is greater than one-half story.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ O & \bullet & O & O \end{array}$	CRIPPLE WALLS: Cripple walls below first-floor-level shear walls are braced to the foundation with wood structural panels. (Commentary: Sec. A.3.2.7.7. Tier 2: Sec. 5.5.3.6.4) Comments: No plywood sheathing could be observed on cripple walls in the basement. It is presumed, based on the age of construction and available existing drawings, that the cripple walls are not sheathed with wood structural panels.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ 0 & - & O & 0 \end{array}$	OPENINGS: Walls with openings greater than 80% of the length are braced with wood structural panel shear walls with aspect ratios of not more than 1.5 -to-1 or are supported by adjacent construction through positive ties capable of transferring the seismic forces. (Commentary: Sec. A.3.2.7.8. Tier 2: Sec. 5.5.3.6.5) Comments: The ground floor front wall has significant openings for the garage door. There are no wood structural panels present.
CONNECTIONS	
	Description
$\begin{array}{cccc} C & \text { NC } & \text { N/A } & \mathbf{U} \\ 0 & 0 & O & O \end{array}$	WOOD POSTS: There is a positive connection of wood posts to the foundation. (Commentary: Sec. A.5.3.3. Tier 2: Sec. 5.7.3.3) Comments: Wood post did not have positive connection to the foundation.
	WOOD SILLS: All wood sills are bolted to the foundation. (Commentary: Sec. A.5.3.4. Tier 2: Sec. 5.7.3.3) Comments: All wood sills in the basement space were concealed by plaster. However, based on the age of the building it is anticipated the wood sill bolting is not adequate.
C NC N/A U	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1) Comments: Girders observed were positively connected to columns.

UC Campus:	San Francisco		Date:	1/2/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:		structure	
Building Name:	$1338{ }^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	1338 3 ${ }^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	3	of	4
ASCE 41-17						

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)

CONNECTIONS

	Description
$\begin{array}{cccc} C & N C & N / A & U \\ O & \bullet & O & O \end{array}$	WOOD SILL BOLTS: Sill bolts are spaced at 6 ft or less with acceptable edge and end distance provided for wood and concrete. (Commentary: Sec. A.5.3.7. Tier 2: Sec. 5.7.3.3) Comments: All wood sills in the basement space were concealed by plaster. However, based on the age of the building it is anticipated the wood sill bolting is not adequate.
DIAPHRAGMS	
	Description
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ 0 & 0 & O & O \end{array}$	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1) Comments No split levels or expansion joints.
C NC N/A U 0000	ROOF CHORD CONTINUITY: All chord elements are continuous, regardless of changes in roof elevation. (Commentary: Sec. A.4.1.3. Tier 2: Sec. 5.6.1.1) Comments: Chords are at one elevation. However, existing drawings showing splice details are not available.
$\begin{array}{cccc} \hline C & \text { NC } & \text { N/A } & \mathbf{U} \\ 0 & 0 & O & O \end{array}$	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments: Maximum Aspect Ratio $=25 \mathrm{ft}: 21 \mathrm{ft}$.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ 0 & 0 & O & O \end{array}$	SPANS: All wood diaphragms with spans greater than $24 \mathrm{ft}(7.3 \mathrm{~m})$ consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) Comments: Existing drawings showing sheathing are not available. It is presumed the diaphragm has straight sheathing based on the age of construction. There is only one span that is greater than 24 ft , which is at level 1 over the utility space.
$C \text { NC N/A U }$	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than $40 \mathrm{ft}(12 \mathrm{~m})$ and have aspect ratios less than or equal to 4 -to- 1 . (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) Comments: All diaphragms span less than 40 ft .

UC Campus:	San Francisco		Date:	1/2/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	$13383^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	$13383^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	4	of	4
	tion st	Collapse Prevention Structural Checkist For Building Type W1-W1A				

| C NC N/A U | OTHER DIAPHRAGMS: The diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal
 bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5)
 Comments: |
| :--- | :---: | :--- | :--- |

Abstract

Appendix C

UCOP Seismic Safety policy Falling Hazards Assessment Summary

UC Campus:	San Francisco		Date:	1/2/2020		
Building CAAN:	2271	Auxiliary CAAN:	By Firm:	Estructure		
Building Name:	$13383^{\text {rd }}$ Avenue		Initials:	AJS	Checked:	MTP
Building Address:	$13383^{\text {rd }}$ Avenue, San Francisco, CA 94122		Page:	1	of	1
UCOP SEISMIC SAFETY POLICY						

	Description
$P \quad N / A$ \boxtimes	Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate (50 ppl or more) Comments:
$\begin{array}{ll} \hline \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$	Heavy masonry or stone veneer above exit ways or public access areas Comments:
$\begin{array}{cc} \hline \mathbf{P} & \text { N/A } \\ \square \\ \square \end{array}$	Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas Comments:
$\begin{array}{ll} \mathbf{P} & \text { N/A } \\ \square & \boxtimes \end{array}$	Unrestrained hazardous material storage Comments:
$\begin{array}{ll} \hline \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$	Masonry chimneys Comments: It appeared the chimney had been replaced with a sheet metal flue. The facilities maintenance technician assisting with the site visit noted that the units have fireplaces, but they had been blocked off.
$\begin{array}{ll} \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc. Comments: The water heater was strapped to the wall.
$P \quad N / A$	Other: Comments:
$P \quad N / A$	Other: Comments:
$P \quad N / A$	Other: Comments:

Falling Hazards Risk: Low

Appendix D

Quick Check Calculations

Dead loads \& Seismic Weight Calculation			
Roof Assembly			
Roofing		3 psf	Estimate, Assume Asphalt Shingles
Sheathing		3 psf	Estimate, Assumed 1x Sheathing
Roof Joists		6 psf	Estimate, Assumed 2x10@16
Ceiling		9 psf	
MEP		0.5 psf	
Misc		0.5 psf	
Walls		5 psf	
Sub-total		27 psf	
4:12 Slope Projection		1.05	Assumed Average Slope
Total	Σ	28 psf	

	Floor Assembly	
Flooring	2 psf	Estimate, Assume Carpet
Sheathing	3 psf	Estimate, Assumed 1x Sheathing
Wood Framing	6 psf	Estimate, Assumed 2x10 @16
Ceilings	2.25 psf	Estimate, 5/8" Gyp Board
MEP	0.5 psf	
Misc	0.5 psf	
Partitions	10 psf	
Total	Σ	$\mathbf{2 4 ~ p s f}$

Exterior Wall Assembly - Wood Siding			
Finish		2 psf	Estimate, Wood Siding
Sheathing		3 psf	Estimate, Assumed 1x Sheathing
Wood Framing		1.5 psf	Estimate, Assumed 2x6 @16
Insulation		0.5 psf	
Interior Finish		2.25 psf	Estimate, 5/8" Gyp Board
MEP		0.5 psf	
Misc		0.5 psf	
Total	Σ	10 psf	

Exterior Wall Finish - Brick Veneer			
Finish		39 psf	Estimate, Brick Veneer
		-2 psf	Less wood siding
Total	Σ	37 psf	Add to typical ext. wall assembly, where occurs

Level 3 (Roof / attic)			
Roof Assembly	p	28 psf	
	A	$1100 \mathrm{ft}^{2}$	
	Wt	31.31 kips	
Exterior Wall - Wood	p	10 psf	
	$\mathrm{htrib}^{\text {tr }}$	5 ft	Half approximate floor height
	L	137 ft	
	Wt	7.02 kips	
Seismic Weight	$\Sigma \mathrm{W}_{\text {typ }}$	38 kips	

Level 2			
Floor Assembly	p	24 psf	(Includes dining room roof)
	A	$1180 \mathrm{ft}^{2}$	
	Wt	28.62 kips	
Exterior Wall - Wood	p	10 psf	Approximate floor height
	$\mathrm{h}_{\text {trib }}$	10 ft	
	L	160 ft	
	Wt	16.41 kips	
Seismic Weight	$\mathrm{W}_{\text {typ }}$	45 kips	

Level 1			
Floor Assembly	p	24 psf	
	A	1190 ft ${ }^{2}$	
	Wt	28.86 kips	
Exterior Wall - Wood	p	10 psf	
	$h_{\text {trib }}$	10 ft	Approximate floor height
	L	157 ft	
	Wt	16.10 kips	
Exterior Wall - Brick	p	37 psf	Along front wall only
	$h_{\text {trib }}$	5 ft	Half approximate floor height
	L	25 ft	
	Wt	4.63 kips	
Seismic Weight	$\Sigma W_{\text {typ }}$	50 kips	

Earthquake	Site Parameters - UCSF Group 3 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)		
	$\mathrm{S}_{\mathrm{s}}=1.548$	$\mathrm{~F}_{\mathrm{a}}=1.2$	$\mathrm{~S}_{\mathrm{Cs}}=1.858$
	$\mathrm{~S}_{1}=0.611$	$\mathrm{~F}_{\mathrm{v}}=1.4$	$\mathrm{~S}_{\mathrm{C} 1}=0.855$

	Building Period		
Empirical factor	C_{t}	0.02	ASCE 41-17 Sec. 4.4.2.4
Roof level height	h	35 ft	ASCE 7-18, 11.2
Empirical factor	β	0.75	ASCE 41-17 Sec. 4.4.2.4
Fundamental period, $\mathrm{T}=\mathrm{C}_{\mathrm{t}} \mathrm{h}_{\mathrm{n}}{ }^{\beta}=$		0.288 sec	ASCE 41-17 Sec. 4.4.2.4 eqn. 4-4

	Calculate Base Shear		
Spectral Acceleration	$\mathrm{S}_{\mathrm{a}}=\mathrm{S}_{\mathrm{x} 1} / \mathrm{T}=2.97$	ASCE 41-17, 4.4.2.3	
	$\mathrm{S}_{\mathrm{a}, \mathrm{max}}=\mathrm{S}_{\mathrm{xS}}=1.8576$	governs	ASCE 41-17, 4.4.2.3
Modification Factor	$\mathrm{C}=1.00$		ASCE 41-17, Table 4-7
Pseudo Seismic Force	$\mathrm{V}=\mathrm{S}_{\mathrm{a}} \times \mathrm{C} \times \mathrm{W}=$	$1.86 \times \mathrm{W}$	ASCE 41-17, Eqn. 4-1
	$\mathrm{V}=$	$\mathbf{2 4 7} \mathrm{kips}$	

Seismic Force Vertical Distribution						
Level	Weight (kips)	Height (ft)	$\mathrm{w}_{\mathrm{x}} \mathrm{h}_{\mathrm{x}}$ (kip_ft)	$\mathrm{C}_{\mathrm{vx}}=w_{x} \mathrm{~h}_{\mathrm{x}} / \sum \mathrm{w}_{\mathrm{x}} \mathrm{h}_{\mathrm{x}}$	$\mathrm{F}_{\mathrm{x}}=\mathrm{C}_{\mathrm{vx}} \mathrm{V}$	Story Shear, V
3 rd	38	35	1342	0.50	124	124
2nd	45	19.75	889	0.33	82	206
1st	50	9	446	0.17	41	247
		0	0	0.00	0	247
Σ	133	Σ	2677	1.00	247	

Longitudinal Direction (East-West)							
Story	Story Shear (kips)	Length of Wall (ft)	M_{s} Factor (ASCE 41-17, Table 4-8)	Average Story Shear Stress (plf)	Quick Check Shear Capacity ${ }^{(1)}$ (plf)	$\begin{aligned} & \text { Pass? } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$	Lvl N Strength / Lvl N+1 Strength
2	124	142	4.5	194	200	Y	--
1	206	117	4.5	391	200	N	82\%
Ground	247	101	4.5	543	200	N	86\%

Transverse Direction (North-South)							
Story	Story Shear (kips)	Length of Wall (ft)	M_{s} Factor (ASCE 41-17, Table 4-8)	Average Story Shear Stress (plf)	Quick Check Shear Capacity ${ }^{\text {(1) }}$ (plf)	$\begin{aligned} & \text { Pass? } \\ & (\mathrm{Y} / \mathrm{N}) \end{aligned}$	Lvl N Strength / Lvl N+1 Strength
2	124	50	4.5	550	200	N	--
1	206	67	4.5	682	200	N	134\%
Ground	247	29	4.5	1,892	200	N	43\%

1. Shear capacity is doubled where walls are covered on both sides.

[^0]: ${ }^{1}$ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

[^1]: ${ }^{2}$ For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where non-structural hazards may occur.

