Text in green is to be part of UCSF building database and may be part of UCOP database.
Date: 2020-04-13
UCSF Building Seismic Ratings
Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue
CAAN\# 2290A
401 Parnassus Avenue, San Francisco, CA 94143
UCSF Campus Site: Parnassus

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	V	Findings based on a drawing review and
Rating basis Date of rating	Tier 1	ASCE 41-17 Tier 1 evaluation ${ }^{1}$

[^0]
Building information used in this evaluation

- \quad Structure - Original Building Structural drawings by the California Department of Public Works Division of Architecture, 19 sheets, dated October 21, 1940.

Additional building information known to exist

- Performance of UCSF Buildings During the October 17, 1989 Loma Prieta Earthquake, Impell Corporation, dated 17 November 1989.

Scope for completing this form

Reviewed original structural construction drawings and performed an ASCE 41-17 Tier 1 evaluation.

Brief description of structure

The building is a five-story tall, L-shaped reinforced concrete structure, partially embedded in a low sloping hill site, occupying approximately $70,000 \mathrm{sq} \mathrm{ft}$ of floor area. The length of the " L " in the $\mathrm{E}-\mathrm{W}$ direction is approximately 177 ft and the " L " in the $\mathrm{N}-\mathrm{S}$ direction is approximately 198 ft . The width of each " L " is approximately 50 ft . The base level is partially buried in a low slope site, sloping down from southeast to northwest. The total height of the building is approximately 60 ft . The building was designed and built circa 1940. A four-story annex was designed on the south of side of the 1940 building in 1957 and is described in a separate report.

Identification of Levels: The basement comprises the lowest level of the building, with first to fifth floor, above grade and a high roof. The high roof occurs over a relatively small portion of the fifth floor at the NW corner. There is a grade differential between the north and south sides of the building of about 10 ft with the grade at the NW corner aligning with the basement level elevation and the grade at the south side aligning with the first floor.

Foundation System: The foundations comprise steel reinforced concrete shallow spread footings below columns and steel reinforced concrete strip footings below walls.

Structural System for Vertical (gravity) load: The horizontal framing comprises a one-way steel reinforced pan joist system supporting a 3 in . thick slab. The typical pan width and depth are 30 in ., and the rib width is 5.5 in . The joists are either supported directly by perimeter concrete walls or concrete beams that are supported by concrete columns typically spaced at 16 ft on center. Most columns are generally rectangular. The columns contain typical tie spacing of 9 in . on center with two sets of ties at the lower levels (one rectangular, one diamond) and single rectangular ties above the second or third floor. The building has a ramp along the west elevation that slopes up from Level 01 to Level 04 . The ramp is supported by 8 in. thick concrete walls.

Structural System for Lateral Loads: The lateral load resisting system comprises reinforced concrete walls and reinforced concrete beam-column frames. Lateral loads are transferred to walls and frames through the reinforced concrete pan joist slab system. The L-shaped building floor plan has one wall line and two frame lines on each leg of the L. All concrete elements, including those not specifically intended to resist lateral loads, will participate in seismic force resistance. The system is unbalanced by both the L-shaped plan and the arrangement and location of walls, including stiffness differences between walls and frames. The system is susceptible to torsional response in earthquake shaking.

Brief description of seismic deficiencies and Expected Seismic Performance

Identified seismic deficiencies of the building include:

- The adjacent building is 2 in. away which is 0.3% of overall height. This is less than the 1.5% requirement of the quick checklist at high seismicity zone.
- There is a vertical irregularity where the wall on the west side at the SW is not continuous to the foundation.
- Because of the L-shaped floor plan, wall configuration and frame configuration, the building is torsionally irregular. The eccentricity associated with the center of rigidity and center of mass is more than 20% of the building width.
- Reinforced concrete wall and column shear stress is larger than the greater of 100 psi or $2 \mathrm{Vf} \mathrm{f}^{\prime} \mathrm{c}$. The maximum calculated DCR is 1.7.
- Concrete column axial stress caused by unfactored gravity loads exceed $0.2 f^{\prime} c$. The maximum calculated DCR is 1.8.
- Columns do not have adequate shear strength to develop moment capacity hinges at the ends.
- Beam-column frames do not comply with strong column-weak beam requirements.
- The two longitudinal top and two longitudinal bottom bars are not continuous through the joints in the beam-column frames.
- Column bar splices are shorter than 35 diameters, failing the quick check requirement.
- Column-ties are spaced greater than the check list maximum spacing of $d / 4$, and beam column joint ties are spaced more than the check list maximum spacing of 8 diameters.

The items listed above may collectively affect the seismic performance of the building such that local failures may occur and negatively affect the global building performance. The wall shear stress may significantly increase after the column shear resistance is lost. The presence of the torsional irregularity will exacerbate column shear failures, further overstressing walls. Columns failing in shear is a non-ductile action that can potentially cause gravity failures.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	Y	Openings at shear walls (concrete or masonry)	N
Load path	Y	Liquefaction	N
Adjacent buildings	Y	Slope failure	N
Weak story	N	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	Y	URM wall height-to-thickness ratio	N
Torsion	Y	URM parapets or cornices	N
Mass - vertical irregularity	N	URM chimney	N
Cripple walls	N	Heavy partitions braced by ceilings	N
Wood sills (bolting)	N	Appendages	N
Diaphragm continuity	N		

Summary of review of nonstructural life-safety concerns, including at exit routes.
A detailed assessment of nonstructural systems has not been performed, but could be performed as part of a Tier 2 evaluation. No life-safety concerns were observed through the drawing review.

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None observed	Unrestrained hazardous materials storage	None observed
Heavy masonry or stone veneer above exit ways and public access areas	None observed	Masonry chimneys	None observed
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	None observed	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	None observed

Basis of seismic performance level rating

A building rating of V can be attributed to the identified deficiencies and the potential for progressive degradations associated with building behavior caused by the building's torsional irregularity. The limited analysis shows that columns fail in shear which may lead to loss of gravity load carrying capacity.

Recommendations for further evaluation or retrofit

If UCSF intends to retain the building for use, we recommend that the University perform a more detailed seismic evaluation. We recommend a three-dimensional response spectrum analysis that accounts for the behaviors related to the identified deficiencies. Detailed analyses should examine areas of potential overstress, including walls, beams, columns, beam-column joints and the effects of retained soil at the
partial basement. Applicable retrofit measures may include thickening existing concrete walls, adding walls along exterior frame lines and wrapping columns with FRP to increase shear capacity and provide confinement.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on 8 January 2020 and agree with a rating of V .

Additional building data	Entry	Notes
Latitude	37.7632917°	
Longitude	-122.4566337 ${ }^{\circ}$	
Are there other structures besides this one under the same CAAN\#	Yes	4 Story LPPI Appendix building constructed in 1955
Number of stories above lowest perimeter grade	5	
Number of stories (basements) below lowest perimeter grade	0	
Building occupiable area (OGSF)	105,115	From UCOP spreadsheet, includes Annex
Risk Category per 2016 CBC 1604.5	11	
Building structural height, h_{n}	56 ft	As defined per ASCE 7-16 Section 11.2
Coefficient for period, C_{t}	0.02	ASCE 41-17 equation 4-4 and 7-18
Coefficient for period,	0.75	ASCE 41-17 equation 4-4 and 7-18
Estimated fundamental period	0.41 sec	ASCE 41-17 equation 4-4 and 7-18
Site data		
975 yr hazard parameters S_{s}, S_{1}	1.553, 0.628	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019) LPPI Outpatient unit
Site class	C	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
Site class basis	Estimated	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
Site parameters F_{a}, F_{v}	1.2, 1.4	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
Ground motion parameters $S_{c s}, S_{c 1}$	1.843, 0.847	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
S_{a} at building period	1.843	Calculated
Site $V_{\text {s30 }}$	360 m/s	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
V_{530} basis	Estimated	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Liquefaction potential	No	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Liquefaction assessment basis	Estimated	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)

Additional building data	Entry	Notes		
Landslide potential	No	$\begin{array}{c}\text { UCSF Group 2 Buildings, Geotechnical } \\ \text { Characteristic and Geohazards (2019) }\end{array}$		
$\begin{array}{l}\text { Landslide assessment basis } \\ \text { Active fault-rupture hazard } \\ \text { identified at site? }\end{array}$	Sloping Site	Rutherford + Chekene Study, 2006	$]$	UCSF Group 2 Buildings, Geotechnical
:---				
Characteristic and Geohazards (2019)				

Appendix A

Drawing Images

Appendix B

Checklists

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	1	of	3
ASCE 41-17						

LOW SEISMICITY

BUILDING SYSTEMS - GENERAL

	Description
C NC N/A U © 000	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1) Comments: Concrete diaphragms transfer loads to the walls and frames, and the walls and frames transfer load to the foundations.
C NC N/A U	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2) Comments: $\mathbf{2}$ inch gap between the two buildings, which is only 0.3%. The buildings are of same height with the same floor elevations but likely different dynamic properties due to their relative configuration.
C NC N/A U 00 C	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3) Comments: No interior mezzanine levels.

BUILDING SYSTEMS - BUILDING CONFIGURATION

	Description
C NC N/A U	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1) Comments: Shear strength in a story is greater or similar to the story above.
C NC N/A U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-forceresisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2) Comments: Walls and frames are of similar geometry and configuration from story to story.

Note: C=Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable U = Unknown

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)	
GEOLOGIC SITE HAZARD	
	Description
$\begin{array}{llll} C & N C & N / A & U \\ C & C & C & C \end{array}$	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within $50 \mathrm{ft}(15.2 \mathrm{~m})$ under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) Comments: Liquefaction potential is negligible.
$\begin{array}{llcc} \hline C & N C & N / A & U \\ - & C & C & C \end{array}$	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments: Slope failure not likely to affect the building.

Note: C=Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

UC Campus	Parnassus		Date:	13 April 2020		
Building CAAN	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address	401 Parnassus Avenue, San Francisco, CA 94143		Page:	3	of	3
ASCE 41-17 Collapse Prevention Basic Configuration Checklist						
MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)						
GEOLOGIC SITE HAZARD						
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & C & C \end{array}$	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) Comments: Faults are adequately distant and do not pose a risk at this site.					

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)

FOUNDATION CONFIGURATION

	Description
$C \text { NC N/A U }$	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6 S_{a}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3) Comments: Base/height at East corner is 33/56 = 0.59 < 1.11
$C \text { NC N/A U }$	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4) Comments: Site Class C.

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	1	of	4
Collapse	revention	SCE 4	For B	Idin	Type C	

Low Seismicit	
Seismic-Force-Resisting System	
	Description
$\begin{array}{cccc} \hline C & N C & N / A & U \\ 6 & 0 & C & C \end{array}$	REDUNDANCY: The number of lines of moment frames in each principal direction is greater than or equal to 2 . (Commentary: Sec. A.3.1.1.1. Tier 2: Sec. 5.5.1.1) Comments: 2 frames (and one wall) in each direction.
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & \bullet & C & C \end{array}$	COLUMN AXIAL STRESS CHECK: The axial stress caused by unfactored gravity loads in columns subjected to overturning forces because of seismic demands is less than $0.20 f^{\prime}$. Alternatively, the axial stress caused by overturning forces alone, calculated using the Quick Check procedure of Section 4.4.3.6, is less than $0.30 f_{c}^{\prime}$. (Commentary: Sec. A.3.1.4.2. Tier 2: Sec. 5.5.2.1.3) Comments: Load in many columns exceed 0.2 f'c and DCRs up to 1.8 are observed.
Connections	
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	CONCRETE COLUMNS: All concrete columns are doweled into the foundation with a minimum of four bars. (Commentary: Sec. A.5.3.2. Tier 2: Sec. 5.7.3.1) Comments: Minimum 4 bars were provided.

Moderate Sei Seismicity)	micity (Complete The Following Items In Addition To The Items For Low
Seismic-Force-Resisting System	
	Description
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	REDUNDANCY: The number of bays of moment frames in each line is greater than or equal to 2. (Commentary: Sec. A.3.1.1.1. Tier 2: Sec. 5.5.1.1) Comments: Minimum number of bays in the building is 2 .
$\begin{array}{llll} C & N C & N / A & U \\ C & C & C & C \end{array}$	INTERFERING WALLS: All concrete and masonry infill walls placed in moment frames are isolated from structural elements. (Commentary: Sec. A.3.1.2.1. Tier 2: Sec. 5.5.2.1.1) Comments: No infill walls in the building.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	2	of	4
ASCE 41-17						Collapse Prevention Structural Checklist For Building Type C1

$\begin{array}{llll} \hline C & N C & N / A & U \\ C & \bullet & C & C \end{array}$	COLUMN SHEAR STRESS CHECK: The shear stress in the concrete columns, calculated using the Quick Check procedure of Section 4.4.3.2, is less than the greater of $100 \mathrm{lb} / \mathrm{in} .^{2}\left(0.69 \mathrm{MPa}\right.$) or $2 \sqrt{ } \mathrm{f}^{\prime} \mathrm{c}$. (Commentary: Sec. A.3.1.4.1. Tier 2: Sec. 5.5.2.1.4) Comments: Maximum shear stress is calculated to be 170 psi > 100 psi.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	FLAT SLAB FRAMES: The seismic-force-resisting system is not a frame consisting of columns and a flat slab or plate without beams. (Commentary: Sec. A.3.1.4.3. Tier 2: Sec. 5.5.2.3.1) Comments: Horizontal frame elements are beams.

High Seismicity (Complete The Following Items In Addition To The Items For Low And Moderate Seismicity)

Seismic-Force-Resisting System

	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	PRESTRESSED FRAME ELEMENTS: The seismic-force-resisting frames do not include any prestressed or post-tensioned elements where the average prestress exceeds the lesser of $700 \mathrm{lb} / \mathrm{in}^{2}(4.83 \mathrm{MPa})$ or $f^{\prime} / 6$ at potential hinge locations. The average prestress is calculated in accordance with the Quick Check procedure of Section 4.4.3.8. (Commentary: Sec. A.3.1.4.4. Tier 2: Sec. 5.5.2.3.2) Comments: No prestressed elements in the building.
C NC N/A U	CAPTIVE COLUMNS: There are no columns at a level with height/depth ratios less than 50% of the nominal height/depth ratio of the typical columns at that level. (Commentary: Sec. A.3.1.4.5. Tier 2: Sec. 5.5.2.3.3) Comments: No captive columns.
C NC N/A U 060	NO SHEAR FAILURES: The shear capacity of frame members is able to develop the moment capacity at the ends of the members. (Commentary: Sec. A.3.1.4.6. Tier 2: Sec. 5.5.2.3.4) Comments: 2Mp/L < (Vc + Vs), DCR = 2.0.
C NC N/A U	STRONG COLUMN-WEAK BEAM: The sum of the moment capacity of the columns is 20% greater than that of the beams at frame joints. (Commentary: Sec. A.3.1.4.7. Tier 2: Sec. 5.5.2.1.5) Comments: Typical beam moment capacity is approximately 2.5 times the column moment capacity.

$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & 0 & C \end{array}$	BEAM BARS: At least two longitudinal top and two longitudinal bottom bars extend continuously throughout the length of each frame beam. At least 25% of the longitudinal bars provided at the joints for either positive or negative moment are continuous throughout the length of the members. (Commentary: A.3.1.4.8. Tier 2: Sec. 5.5.2.3.5) Comments: Exterior frames comply, interior frames do not.
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & C & 0 \end{array}$	COLUMN-BAR SPLICES: All column-bar lap splice lengths are greater than $35 d_{b}$ and are enclosed by ties spaced at or less than $8 d_{b}$. Alternatively, column bars are spliced with mechanical couplers with a capacity of at least 1.25 times the nominal yield strength of the spliced bar. (Commentary: Sec. A.3.1.4.9. Tier 2: Sec. 5.5.2.3.6) Comments: Splice length < $35 \mathrm{~d}_{\mathrm{b}}$
$\begin{array}{llll} \hline \text { C } & \text { NC } & \text { N/A } & \mathbf{U} \\ - & 0 & 0 & 0 \end{array}$	BEAM-BAR SPLICES: The lap splices or mechanical couplers for longitudinal beam reinforcing are not located within $I_{d} / 4$ of the joints and are not located in the vicinity of potential plastic hinge locations. (Commentary: Sec. A.3.1.4.10. Tier 2 : Sec. 5.5.2.3.6) Comments: Lap splices for bottom bars are typically located at the joints and are too short to develop much of the bar strength.
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & 0 & 0 \end{array}$	COLUMN-TIE SPACING: Frame columns have ties spaced at or less than $d / 4$ throughout their length and at or less than $8 d_{b}$ at all potential plastic hinge locations. (Commentary: Sec. A.3.1.4.11. Tier 2: Sec. 5.5.2.3.7) Comments: Tie spacing > d/4.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & 0 & 0 & C \end{array}$	STIRRUP SPACING: All beams have stirrups spaced at or less than d/2 throughout their length. At potential plastic hinge locations, stirrups are spaced at or less than the minimum of $8 d_{b}$ or $d / 4$. (Commentary: Sec. A.3.1.4.12. Tier 2: Sec. 5.5.2.3.7) Comments: Stirrups do not occur in the middle third of the length of the beams.
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & 0 & C \end{array}$	JOINT TRANSVERSE REINFORCING: Beam-column joints have ties spaced at or less than $8 d_{b}$. (Commentary: Sec. A.3.1.4.13. Tier 2: Sec. 5.5.2.3.8) Comments: No joint reinforcing.
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & O & O \end{array}$	DEFLECTION COMPATIBILITY: Secondary components have the shear capacity to develop the flexural strength of the components. (Commentary: Sec. A.3.1.6.2. Tier 2: Sec. 5.5.2.5.2) Comments: Column shear capacity not adequate.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & \bullet & 0 \end{array}$	FLAT SLABS: Flat slabs or plates not part of the seismic-force-resisting system have continuous bottom steel through the column joints. (Commentary: Sec. A.3.1.6.3. Tier 2: Sec. 5.5.2.5.3) Comments: No flat slab system in the building.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	4	of	4
Collapse Prevention Structural Checklist For Building Type C1						

Diaphragms	
	Description
$\begin{array}{llll} \text { C } & \text { NC } & \text { N/A } & \mathbf{U} \\ C & C & 0 & 0 \end{array}$	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1) Comments: Diaphragms are continuous.
Connections	
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	UPLIFT AT PILE CAPS: Pile caps have top reinforcement, and piles are anchored to the pile caps. (Commentary: Sec. A.5.3.8. Tier 2: Sec. 5.7.3.5) Comments: Foundations are shallow spread and strip footings.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics,Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	1	of	3
ASCE 41-17						

Low And Mod	rate Seismicity
Seismic-Force-Resisting System	
	Description
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} \end{array}$	COMPLETE FRAMES: Steel or concrete frames classified as secondary components form a complete vertical-load-carrying system. (Commentary: Sec. A.3.1.6.1. Tier 2: Sec. 5.5.2.5.1) Comments: The joists frame into walls, no columns within wall or adjacent to wall.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & O & O \end{array}$	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Comments: There is two lines of shear walls, one at each end.
$\begin{array}{cccc} \hline \mathbf{C} & \text { NC } & \text { N/A } & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \mathrm{C} & \mathrm{C} \end{array}$	SHEAR STRESS CHECK: The shear stress in the concrete shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the greater of $100 \mathrm{lb} / \mathrm{in.}^{2}{ }^{2}\left(0.69 \mathrm{MPa}\right.$) or $2 \sqrt{ } f^{\prime}$.' (Commentary: Sec. A.3.2.2.1. Tier 2: Sec. 5.5.3.1.1) Comments: Maximum shear stress is calculated to be 170 psi > 100 psi
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & O & C \end{array}$	REINFORCING STEEL: The ratio of reinforcing steel area to gross concrete area is not less than 0.0012 in the vertical direction and 0.0020 in the horizontal direction. (Commentary: Sec. A.3.2.2.2. Tier 2: Sec. 5.5.3.1.3) Comments: Typical vertical and horizontal is 0.0025 for both 8 " and 10 " wall.
Connections	
	Description
$\begin{array}{llll} C & N C & N / A & U \\ C & C & C & C \end{array}$	WALL ANCHORAGE AT FLEXIBLE DIAPHRAGMS: Exterior concrete or masonry walls that are dependent on flexible diaphragms for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1) Comments: Available reinforcement is more than required.
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & 0 & 0 \end{array}$	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2) Comments: Wall construction joints are below the slab, wall vertical reinforcement is continuous through the joint and slab reinforcement into the wall is \#3@8" on center.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	2	of	3
ASCE 41-17						

C	NC	N/A	U	FOUNDDATION DOWELS: Wall reinforcement is doweled into the foundation with vertical bars equal in size and spacing to the vertical wall reinforcing directly above the foundation. (Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7 .3 .4$)$
Comments: In typical foundation details, dowel same size and spacing as the vertical wall				
reinforcement is used.				

High Seismicity (Complete The Following Items In Addition To The Items For Low And Moderate Seismicity)	
Seismic-Force-Resisting System	
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & - & C & C \end{array}$	DEFLECTION COMPATIBILITY: Secondary components have the shear capacity to develop the flexural strength of the components. (Commentary: Sec. A.3.1.6.2. Tier 2: Sec. 5.5.2.5.2) Comments: 2Mp/L < (Vc + Vs), DCR 2.0
$\begin{array}{llll} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	FLAT SLABS: Flat slabs or plates not part of the seismic-force-resisting system have continuous bottom steel through the column joints. (Commentary: Sec. A.3.1.6.3. Tier 2: Sec. 5.5.2.5.3) Comments: No flat slabs occur in the building.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & 0 & 0 & C \end{array}$	COUPLING BEAMS: The ends of both walls to which the coupling beam is attached are supported at each end to resist vertical loads caused by overturning. (Commentary: Sec. A.3.2.2.3. Tier 2: Sec. 5.5.3.2.1) Comments: Walls are supported vertically at the ends.
Diaphragms (Stiff Or Flexible)	
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1) Comments: Diaphragms are continuous.
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & 0 \end{array}$	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3) Comments: The elevator opening is not adjacent to shear wall. Stair openings are less than $\mathbf{2 5 \%}$.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290A	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	3	of	3
ASCE 41-17						

Flexible Diaph	ragms
	Description
$\begin{array}{llll} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2) Comments: Diaphragms are concrete.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments: Diaphragms are concrete.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	SPANS: All wood diaphragms with spans greater than $24 \mathrm{ft}(7.3 \mathrm{~m})$ consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) Comments: Diaphragms are concrete.
$\begin{array}{llcc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than $40 \mathrm{ft}(12.2 \mathrm{~m})$ and aspect ratios less than or equal to 4 -to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) Comments: Diaphragms are concrete.
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5) Comments: Diaphragms are concrete.
Connections	
	Description
$\begin{array}{llll} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	UPLIFT AT PILE CAPS: Pile caps have top reinforcement, and piles are anchored to the pile caps. (Commentary: Sec. A.5.3.8. Tier 2: Sec. 5.7.3.5) Comments: Foundations are shallow spread and strip footings.

Appendix C

Tier 1 Calculations

SHEET NO. \qquad
PROJECT NO. 197042.00
DATE \qquad 11.04.2019
BY \qquad AS
CHECKED BY \qquad

CLIENT	UCSF
SUBJECT	LPPI: Flat Load

\qquad

MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, L_{o}, AND MINIMUM CONCENTRATED LIVE LOADS

OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (Ibs.)
17. Hospitals	80	1,000
Corridors above first floor	60	1,000
Operating rooms, laboratories	60	10
Patient rooms	40	1,000

SIMPSON GUMPERTZ \& HEGER		SHEET No \qquad PROJECT NO.
Engineering of Structures and Building Enclosures		DATE
CLIENT UCSF		BY
SUBJECT Flat Load Table		CHECKED
Slab Effective Weight		
Floor Type	Effective Thickness (in)	Net Weight (psf)
Type 1 (S3, S5, 1S1, 1S3, 5S2, RS2, 5S1, 5S2)	3.5	43.75
Type 2 (S1, S2, S4, 1S2, 5S1, RS3)	4	50
Type 3 (1S4, RS1)	4.5	56.25
Type 4 (RS4)	5	62.5
Type 5 (S5)	6	75
Type A	5.8	72.7
Type B	5.5	68.9
Type C	5.2	65.1
Type D	4.9	61.3
Type E	9.7	120.8

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{SIMPSON GUMPERTZ \& HEGER} \& \& \& \multicolumn{2}{|l|}{SHEET NO.} \&

\hline \multicolumn{5}{|c|}{Engineering of Structures and Building Enclosures} \& DATE \& \& 11/05/2019

\hline \multicolumn{5}{|l|}{CLIENT UCSF} \& \multicolumn{2}{|l|}{BY} \& AS

\hline \multicolumn{5}{|l|}{SUBJECT Flat Load Table} \& \multirow[t]{2}{*}{CHECKED

73595} \& \& KDP

\hline Floor \& Floor slab type \& Net Area sq. ft. \& Net weight psf \& Total weight kips \& \& \&

\hline \multirow{14}{*}{Floor 1} \& Type 1 \& 724 \& 43.8 \& 32 \& \& \&

\hline \& Type 2 \& 1691 \& 50.0 \& 85 \& \& \&

\hline \& Type 3 \& 0 \& 56.3 \& 0 \& \& \&

\hline \& Type 4 \& 0 \& 62.5 \& 0 \& \& \&

\hline \& Type 5 \& 232 \& 75.0 \& 17 \& \& \&

\hline \& Type A \& 3154 \& 72.7 \& 229 \& \& \&

\hline \& Type B \& 6660 \& 68.9 \& 459 \& \& \&

\hline \& Type C \& 498 \& 65.1 \& 32 \& \& \&

\hline \& Type D \& 508 \& 61.3 \& 31 \& \& \&

\hline \& Type E \& 170 \& 120.8 \& 21 \& \& \&

\hline \& \& Length (ft) \& Weight (plf) \& \& Partition \& MEP \& Floor finish and Misc

\hline \& Bridging \& 443 \& 74.5 \& 33 \& psf \& psf \& psf

\hline \& Int. beams \& 566 \& 375.0 \& 212 \& 10 \& 5 \& 5

\hline \& SUM \& \multicolumn{2}{|l|}{13637} \& 939 \& 136 \& 68 \& 68

\hline \multirow{14}{*}{Floor 2} \& Type 1 \& 669 \& 43.8 \& 29 \& \& \&

\hline \& Type 2 \& 1530 \& 50.0 \& 76 \& \& \&

\hline \& Type 3 \& 0 \& 56.3 \& 0 \& \& \&

\hline \& Type 4 \& 169 \& 62.5 \& 11 \& \& \&

\hline \& Type 5 \& 132 \& 75.0 \& 10 \& \& \&

\hline \& Type A \& 2246 \& 72.7 \& 163 \& \& \&

\hline \& Type B \& 8428 \& 68.9 \& 581 \& \& \&

\hline \& Type C \& 498 \& 65.1 \& 32 \& \& \&

\hline \& Type D \& 945 \& 61.3 \& 58 \& \& \&

\hline \& Type E \& 170 \& 120.8 \& 21 \& \& \&

\hline \& \& Length (ft) \& Weight (plf) \& \& \& \& Floor finish and Misc

\hline \& Bridging \& 476 \& 74.5 \& 35 \& psf \& psf \& psf

\hline \& Int. beams \& 566 \& 375.0 \& 212 \& 10 \& 5 \& 5

\hline \& SUM \& 14786 \& \& 1017 \& 148 \& 74 \& 74

\hline \multirow{14}{*}{Floor 3, Floor 4} \& Type 1 \& 528 \& 43.8 \& 23 \& \& \&

\hline \& Type 2 \& 1614 \& 50.0 \& 81 \& \& \&

\hline \& Type 3 \& 0 \& 56.3 \& 0 \& \& \&

\hline \& Type 4 \& 0 \& 62.5 \& 0 \& \& \&

\hline \& Type 5 \& 132 \& 75.0 \& 10 \& \& \&

\hline \& Type A \& 2246 \& 72.7 \& 163 \& \& \&

\hline \& Type B \& 6744 \& 68.9 \& 465 \& \& \&

\hline \& Type C \& 447 \& 65.1 \& 29 \& \& \&

\hline \& Type D \& 945 \& 61.3 \& 58 \& \& \&

\hline \& Type E \& 170 \& 120.8 \& 21 \& \& \&

\hline \& \& Length (ft) \& Weight (plf) \& \& Partition \& MEP \& Floor finish and Misc

\hline \& Bridging \& 406 \& 74.5 \& 30 \& \& psf \& psf

\hline \& Int. beams \& 566 \& 375.0 \& 212 \& 10 \& 5 \& 5

\hline \& SUM \& 12825 \& \& 880 \& 128 \& 64 \& 64

\hline
\end{tabular}

SIMPSON GUMPERTZ \& HEGER

| Engineering of Structures and Building Enclosures
CLIENT UCSF
SUBJECT Flat Load Table

SHEET NO.	
PROJECT NO.	197042.00
DATE	11/05/2019
BY	AS
CHECKED	KDP

Calculations below are used to estimate unit weight of walls per foot

Floor 1	exterior wall elevation	avg height ft	Gross vol wall cu.ft	openings cu.ft	net weight kip	unit load kip/ft
	Ele 1-8	10.875	1266.9	152.1	167	1.196
	Ele 8-10	10.875	402.4	82.3	48	1.081
	Ele 10-12	10.875	285.5	41.7	37	1.161
	Ele 12-13	10.875	199.0	37.1	24	1.106
Floor 2	exterior wall elevation	avg height ft	Gross vol wall cu.ft	openings cu.ft	net weight kip	unit load kip/ft
	Ele 1-8	11.5	1116.5	225.0	134	1.148
	Ele 8-10	11.5	354.6	139.0	32	0.874
	Ele 10-12	11.5	251.6	74.6	27	1.011
	Ele 12-13	11.5	175.4	42.5	20	1.089
Floor 3, Floor 4	exterior wall elevation	avg height ft	Gross vol wall cu.ft	openings cu.ft	net weight kip	unit load kip/ft
	Ele 1-8	11.5	1116.5	235.8	132	1.134
	Ele 8-10	11.5	354.6	113.3	36	0.978
	Ele 10-12	11.5	251.6	65.8	28	1.061
	Ele 12-13	11.5	175.4	37.5	21	1.130
Floor 5 \& Roof	exterior wall elevation	avg height ft	Gross vol wall cu.ft	openings cu.ft	net weight kip	unit load kip/ft
	Ele 1-8	9.75	946.6	117.9	124	1.067
	Ele 8-10	11.5	354.6	113.3	36	0.978
	Ele 10-12	11.5	251.6	65.8	28	1.061
	Ele 12-13	11.5	175.4	27.1	22	1.216
Roof over Floor 5	exterior wall elevation	avg height ft	Gross vol wall cu.ft	openings cu.ft	net weight kip	unit load kip/ft
	Ele 1-8	0	0	0	0	
	Ele 8-10	5.75	177.3	56.7	18	0.489
	Ele 10-12	5.75	125.8	32.9	14	0.531
	Ele 12-13	5.75	87.7	5.0	12	0.678

Looking at the uniform linear load, assume 1.2 kip/ft

SHEET NO.
PROJECT NO.
DATE
BY
CHECKED

Floor $1 \begin{aligned} & \text { Location } \\ & \\ & \text { interior columns }\end{aligned}$	Number of columns	section area sq.ft.	average height ft	net weight kip
	33	2.78	10.875	150
		Estimate of exterior wall/column weight		
		Total length ft	unit load kip/ft	Net Weight kips
		1115	1.2	1338
Location	Number of columns	section area sq.ft.	average height ft	net weight kip
interior columns	33	2.78	11.5	158

SIMPSON GUMPERTZ \& HEGER				SHEET NO.		
				PROJECT NO.		197042.00
Engineering of Structures and Building Enclosures				DATE		11/05/2019
CLIENT UCSF				BY		AS
SUBJECT Flat Load Table				CHECKED		KDP
Floor 5 \& Roof	Location	Number of columns	section area sq.ft.	average height net weight ft kip		
	interior columns	24	1.17	6.75	29	
		8	1.36	11.5	19	
			Estimate of exterior wall/column weight			
			Total length ft	unit load kip/ft	Net Weight kips	
			897	1.2	1076.4	
Roof over Floor 5	Location	Number of columns	section area sq.ft.	average height ft	net weight kip	
	interior columns	9	1.00	5.75	8	
			Estimate of exterior wall/column weight			
			Total length ft	unit load kip/ft	Net Weight kips	
			206	1	206	

Total weight of vertical elements	6482 kips

Seismic Weight per Floor

Floor	Weight kips	Total Seismic Weight kips	(10\% added for staircase and other unaccounted items)
Floor 1	2699	2969	
Floor 2	2655	2921	
Floor 3	2293	2523	
Floor 4	2293	2523	
Floor 5 \& Roof	2139	2353	
Roof over Floor 5	451	496	
Total Seismic Weight 13785			
Total Self weight of the building			12343 kips
Partition			679 kips
MEP			382 kips
Floor finish			382 kips
Net Seismic Weight			13,785 kips

SIMPSON GUMPERTZ \& HEGER

Engineering of Structures and Building Enclosures
CLIENT UCSF
SUBJECT LPPI-General building information

SHEET NO.	
PROJECT NO.	197042.00
DATE	11/06/2019
BY	AS
CHECKED	KDP

General Building Information			
	Value	Units	Reference Document
Total building height	66.0	ft	Including penthouse
Effective Seismic Weight	13785	kips	
Compliance (per CBC)			2016 CBC 3412A.2.3
Structural Performance Level	S-5	BSE - C	2019 CBC Table 317.5
Non-structural	$\mathrm{N}-\mathrm{D}$		
Lateral System per ASCE 41	C 2		Also contains C1, certain locations
Risk Category	III		CBC 1604.5
S $_{\text {xS, BsE-C }}$	1.843	g	
Sx1, BsE-C	0.847	g	
Site Class	C		
Ct	0.02		
beta	0.75		
height	66	ft	Including penthouse
Time Period T	0.46	s	
Sa	1.829	g	
C	1		ASCE 41-17, Table 4-7
Base Shear	25212	kips	Base Shear

Floor	Wi $\mathbf{k i p}$	$\mathbf{(h i)}^{\mathbf{k}}$ $\mathbf{f t}$	Wi (hi) $^{\mathbf{k}}$	Cvi	Fi kip	Vi kip
Roof over Floor 5	496	10.0	4963.5	0.03	816	816
Floor 5 \& Roof	2353	11.5	27062.7	0.18	4,450	5,266
Floor 4	2523	11.5	29011.8	0.19	4,770	10,036
Floor 3	2523	11.5	29011.8	0.19	4,770	14,807
Floor 2	2921	11.5	33586.0	0.22	5,523	20,329
Floor 1	2969	10.0	29694.0	0.19	4,883	25,212
			153329.8	1.00	25,212	
*K = 1 for 6 storin						

*K = 1 for 6 stories or lower per 4.4.2.2

Flexible diaphragm connection force	
Ψ	1 CP
Sxs	1.843 g
wp	125 psf
Ap	$310.5 \mathrm{ft} \wedge 3$
Tc	71.5 kips
Grade of steel	33 ksi
Area of steel required	$2.17 \mathrm{sq} . \mathrm{in}$
Provided	$2.81 \mathrm{sq} . \mathrm{in}$

SIMPSON GUMPERTZ \& HEGER	SHEET NO.	
	PROJECT NO.	197042.00
Engineering of Structures and Building Enclosures	DATE	11/08/2019
CLIENT UCSF	BY	AS
SUBJECT LPPI-Columns	CHECKED	KDP

Column Shear Capacity Check

Square Columns

\qquad

Column Axial Stress Check

Column trib	$\begin{gathered} \mathrm{L} \\ \mathrm{ft} \end{gathered}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{ft} \end{aligned}$	$\begin{array}{r} \text { area } \\ \text { sq.ft. } \end{array}$							
	21	16	336							
Level	DL psf	Beam self wt lb	SDL psf	LL psf	Unfactore d load kip	```Cummulativ e Load kip```	$\begin{gathered} \text { Column c/s } \\ \text { sq.in } \\ \hline \hline \end{gathered}$	Axial Stress ksi	Allowable Stress ksi	DCR
Roof	68.9	7191.667	20	60	57.23	57.23	144	0.397431	0.4	0.99
Level 04	68.9	7191.667	20	60	57.23	114.46	196	0.58398	0.4	1.46
Level 03	68.9	7191.667	20	60	57.23	171.69	256	0.670664	0.4	1.68
Level 02	68.9	7191.667	20	60	57.23	228.92	324	0.706543	0.4	1.77
Level 01	68.9	7191.667	15	20	42.11	271.03	484	0.559979	0.4	1.40

[^0]: ${ }^{1}$ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

