Text in green is to be part of UCSF building database and may be part of UCOP database.
Date: 2020-04-13
UCSF Building Seismic Ratings
Langley Porter Psychiatric Hospital and Clinics - Annex, Parnassus Avenue
CAAN\# 2290B
401 Parnassus Avenue, San Francisco, CA 94143
UCSF Campus Site: Parnassus

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	V	Findings based on a drawing review and ASCE 41-17 Tier 1 evaluation ${ }^{1}$
Rating basis	Tier 1	ASCE 41-17
Date of rating	2019	
Recommended UCSF priority category for retrofit	N/A	Planned for demolition
Ballpark total project cost to retrofit to IV rating	N/A	
Is 2018-2019 rating required by UCOP?	Yes	Building is previously rated IV but does not have a fully documented review.
Further evaluation recommended?	N/A	

[^0]SIMPSON GUMPERTZ \& HEGER

Building information used in this evaluation

- \quad Structure - Original Building Structural drawings by the California Department of Public Works Division of Architecture, 11 sheets, dated October 25, 1957.

Additional building information known to exist

- Performance of UCSF Buildings During the October 17, 1989 Loma Prieta Earthquake, Impell Corporation, dated 17 November 1989.

Scope for completing this form

Reviewed original structural construction drawings and performed an ASCE 41-17 Tier 1 evaluation.

Brief description of structure

The building is a four-story tall structure occupying approximately $35,000 \mathrm{sq} \mathrm{ft}$ of floor area with no basement. It is rectangular in plan, with a 45-degree kink at the west side where it interfaces with the existing building. A significant slope exists along the northeast elevation starting halfway between Level 2 and 3, dropping down to Level 1 towards the west side. The seismic base is assumed to align with Level 1 for the analysis. The building was constructed circa 1957.

Identification of Levels: The lowest level is referred to as first floor (Level 1) is on grade, with the second, third, fourth and roof levels above. The second floor is accessed on the east side of the building, while Level 1 is accessible via grade at the north elevation. The roof has two penthouses above the stair and elevator shaft.

Foundation System: The foundations comprise reinforced concrete shallow spread footings below the columns and reinforced concrete strip footings below the walls. The wall strip footing steps down from a high point at the east edge (EL. +400.00) to the basement of the adjacent building (EL. +391.50) at the west.

Structural System for Vertical (gravity) load: The floor on the north and south side of the central corridor comprises a one-way joist system supporting a 3 in. thick slab. The typical pan width and depth are 30 in . and 12 in. respectively, with rib width of 5.5 in . The joists are supported by concrete walls along the building perimeter and beams on the interior. Beams are supported by columns that are typically spaced at 20 ft on center. Type A columns have \#3 rectangular hoops spaced at 10 in . on center. Type B are similar with an intermediate tie added in the short dimension of the column. The building has a stair shaft from Level 01 to Level 04 at the east end, comprising 8 in. thick concrete walls. An elevator shaft at the west side of the building has 10 in . thick concrete walls.

Structural System for Lateral Loads: The lateral load resisting system comprises steel reinforced concrete perimeter shear walls. Lateral loads are transferred to walls through the slab. The structure is generally symmetric with a continuous perimeter wall system.

Brief description of seismic deficiencies and Expected Seismic Performance

Identified seismic deficiencies of the building include the following:

- The adjacent building is within 2 in., which is 0.3% of overall height. This is less than the 1.5% requirement of the quick checklist at high seismicity zone.
- Reinforced concrete wall shear stress is larger than the greater of 100 psi or $2 \mathrm{Vf}^{\prime} \mathrm{c}$ with the maximum DCR of 1.7.

The concrete shear wall stresses exceed the quick check allowable stresses, but this neglects the wall reinforcement contribution which is approximately equal to the concrete shear resistance. Additionally, the column shear strengths including the tie reinforcement are adequate to develop the column flexural strengths indicating that the columns will likely maintain gravity-carrying ability.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	Y	Openings at shear walls (concrete or masonry)	N
Load path	N	Liquefaction	N
Adjacent buildings	Y	Slope failure	N
Weak story	N	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	N	URM wall height-to-thickness ratio	N
Torsion	N	URM parapets or cornices	N
Mass - vertical irregularity	N	URM chimney	N
Cripple walls	N	Heavy partitions braced by ceilings	N
Wood sills (bolting)	N		N
Diaphragm continuity			

Summary of review of nonstructural life-safety concerns, including at exit routes.

A detailed assessment of nonstructural systems has not been performed, but could be performed as part of a Tier 2 evaluation. No life-safety concerns were observed through the drawing review.

SIMPSON GUMPERTZ \& HEGER

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None observed	Unrestrained hazardous materials storage	None observed
Heavy masonry or stone veneer above exit ways and public access areas	None observed	Masonry chimneys	None observed
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	None observed	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	None observed

Basis of seismic performance level rating

The building rating of V can be attributed to the minimal amount of identified deficiencies and the steeply sloped site that may affect building response when subjected to seismic ground motion.

Recommendations for further evaluation or retrofit:

The building does not require further evaluation or retrofit.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on 8 January 2020 and unanimously concur with the Seismic Performance Level V rating.

Additional building data	Entry	Notes
Latitude	37.7632917°	
Longitude	-122.456637°	
Are there other structures besides this one under the same CAAN\#	Yes	LPPI Original building constructed in 1940
Number of stories above lowest perimeter grade	4	There is none below the lowest perimeter
Number of stories (basements)		grade. However the highest perimeter
grade is above 2		

Additional building data	Entry	Notes
Site class	C	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
Site class basis	Estimated	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
Site parameters F_{a}, F_{v}	1.2, 1.4	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
Ground motion parameters $S_{c s}, S_{c 1}$	1.843, 0.847	UCSF Group 3 Buildings, Geotechnical Characteristic and Geohazards (2019)
S_{a} at building period	1.843	Calculated
Site $V_{s 30}$	360 m/s	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
$V_{s 30}$ basis	Estimated	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Liquefaction potential	No	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Liquefaction assessment basis	Estimated	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Landslide potential	No	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Landslide assessment basis	Sloping Site	Rutherford + Chekene Study, 2006
Active fault-rupture hazard identified at site?	No	UCSF Group 2 Buildings, Geotechnical Characteristic and Geohazards (2019)
Site-specific ground motion study?	No	
Applicable code		
Applicable code or approx. date of original construction	Original Building Drawings Dated 1957	
Applicable code for partial retrofit	None	No partial retrofit known
Applicable code for full retrofit	None	No full retrofit known
Model building data		
Model building type North-South	C2	
Model building type East-West	C2	
FEMA P-154 score	N/A	Not included here because we performed ASCE 41 Tier 1 evaluation.
Previous ratings		
Most recent rating	IV	UCSF Building Seismic Survey and Ratings
Date of most recent rating	-	2013
$2^{\text {nd }}$ most recent rating	-	
Date of $2^{\text {nd }}$ most recent rating	-	
Appendices		
ASCE 41 Tier 1 checklist included here?	Yes	Refer to attached checklist file

Appendix A

Drawing Images

Appendix B

Checklists

UC Campus:	Parnassus		Date:	01-08-2020		
Building CAAN:	2290	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics - Annex, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	1	of	3
ASCE 41-17						

LOW SEISMICITY

BUILDING SYSTEMS - GENERAL

	Description
C NC N/A U © 0 C	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1) Comments: Concrete diaphragms transfer loads to the walls, and the walls transfers load to the foundations.
C NC N/A U 060	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2) Comments: 2 inch gap between the two buildings, which is only 0.3%. However the buildings are of same height with same floor elevations.
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3) Comments: No mezzanines.

BUILDING SYSTEMS - BUILDING CONFIGURATION

			Description	
\mathbf{C}	$\mathbf{N C}$	\mathbf{N} / \mathbf{A}	\mathbf{U}	WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not
less than 80\% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)				
Comments: Shear strength in a story is greater or similar to the story above.				

Note: C = Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable U = Unknown

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)
 GEOLOGIC SITE HAZARD

		Description	
\mathbf{C}	NC	\mathbf{N} / \mathbf{A}	\mathbf{U}

Note: C = Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable U = Unknown

UC Campus	Parnassus		Date:	13 April 2020		
Building CAAN	2290	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name	Langley Porter Psychiatric Hospital and Clinics - Annex, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address	401 Parnassus Avenue, San Francisco, CA 94143		Page:	3	of	3
ASCE 41-17 Collapse Prevention Basic Configuration Checklist						
MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)						
GEOLOGIC SITE HAZARD						
$\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ C & C & C & C \end{array}$	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) Comments: Faults are adequately distant and do not pose a risk at this site.					

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)

FOUNDATION CONFIGURATION

	Description
$C \text { NC N/A U }$	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6 S_{a}$. (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3) Comments: Wall lengths are of adequate length.
$C \text { NC N/A U }$	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4) Comments: Site Class C.

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics - Annex,Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	1	of	3
ASCE 41-17						

Low And Mod	rate Seismicity
Seismic-Force-Resisting System	
	Description
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	COMPLETE FRAMES: Steel or concrete frames classified as secondary components form a complete vertical-load-carrying system. (Commentary: Sec. A.3.1.6.1. Tier 2: Sec. 5.5.2.5.1) Comments: The joists and beams are supported by walls and columns.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Comments: There are two lines of shear walls, one at each end on the perimeter.
$\begin{array}{cccc} \hline \mathbf{C} & N C & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ \mathrm{C} & - & 0 & C \end{array}$	SHEAR STRESS CHECK: The shear stress in the concrete shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than the greater of $100 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}\left(0.69 \mathrm{MPa}\right.$) or $2 \sqrt{ } \mathrm{f}^{\prime}$. (Commentary: Sec. A.3.2.2.1. Tier 2: Sec. 5.5.3.1.1) Comments: Maximum shear stress is calculated to be $170 \mathrm{lb} / \mathrm{in} 2 \boldsymbol{>} 100 \mathrm{lb} / \mathrm{in} 2$
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & O & C \end{array}$	REINFORCING STEEL: The ratio of reinforcing steel area to gross concrete area is not less than 0.0012 in the vertical direction and 0.0020 in the horizontal direction. (Commentary: Sec. A.3.2.2.2. Tier 2: Sec. 5.5.3.1.3) Comments: Typ. vertical and horizontal is 0.003 and 0.0028 for 8 " and 10 " wall respectively.
Connections	
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	WALL ANCHORAGE AT FLEXIBLE DIAPHRAGMS: Exterior concrete or masonry walls that are dependent on flexible diaphragms for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1) Comments: Diaphragms are concrete.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & 0 & 0 & 0 \end{array}$	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2) Comments: Joists and beams are connected to the walls.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics - Annex, Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	2	of	3
Collapse Prevention Structural Checkist For Building Type C2-C2A						

C	NC	\mathbf{N} / \mathbf{A}	\mathbf{U}	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation with vertical bars equal in size and spacing to the vertical wall reinforcing directly above the foundation. (Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7.3.4)
Comments: In typical foundation details, dowel same size and spacing as the vertical wall reinforcement is used.				

High Seismicity (Complete The Following Items In Addition To The Items For Low And Moderate Seismicity)	
Seismic-Force-Resisting System	
	Description
$\begin{array}{cccc} \hline C & N C & N / A & U \\ - & C & C & C \end{array}$	DEFLECTION COMPATIBILITY: Secondary components have the shear capacity to develop the flexural strength of the components. (Commentary: Sec. A.3.1.6.2. Tier 2: Sec. 5.5.2.5.2) Comments: $2 \mathrm{Mp} / \mathrm{L}<(\mathrm{Vc}+\mathrm{Vs})$
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	FLAT SLABS: Flat slabs or plates not part of the seismic-force-resisting system have continuous bottom steel through the column joints. (Commentary: Sec. A.3.1.6.3. Tier 2: Sec. 5.5.2.5.3) Comments: No flat slabs in the building.
$\begin{array}{llll} \hline C & N C & N / A & U \\ - & C & 0 & C \end{array}$	COUPLING BEAMS: The ends of both walls to which the coupling beam is attached are supported at each end to resist vertical loads caused by overturning. (Commentary: Sec. A.3.2.2.3. Tier 2: Sec. 5.5.3.2.1) Comments: Walls are supported vertically at the ends and coupling beams aren't true coupling beams, walls are punched with deep "coupling beams."
Diaphragms (Stiff Or Flexible)	
	Description
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	DIAPHRAGM CONTINUITY: The diaphragms are not composed of split-level floors and do not have expansion joints. (Commentary: Sec. A.4.1.1. Tier 2: Sec. 5.6.1.1) Comments: Diaphragms are continuous with no steps.
$\begin{array}{llll} C & N C & N / A & U \\ C & C & C & C \end{array}$	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3) Comments: The elevator opening is not adjacent to shear wall. Stair openings are less than $\mathbf{2 5 \%}$.

UC Campus:	Parnassus		Date:	13 April 2020		
Building CAAN:	2290	Auxiliary CAAN:	By Firm:	Simpson Gumpertz \& Heger		
Building Name:	Langley Porter Psychiatric Hospital and Clinics - Annex,Parnassus Avenue		Initials:	AS	Checked:	KDP
Building Address:	401 Parnassus Avenue, San Francisco, CA 94143		Page:	3	of	3
ASCE 41-17						

Flexible Diap	ragms
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2) Comments: Diaphragms are concrete.
$\begin{array}{lllll} \hline C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments: Diaphragms are concrete.
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	SPANS: All wood diaphragms with spans greater than $24 \mathrm{ft}(7.3 \mathrm{~m})$ consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) Comments: Diaphragms are concrete.
$\begin{array}{llcc} C & N C & N / A & U \\ C & C & \bullet & 0 \end{array}$	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than $40 \mathrm{ft}(12.2 \mathrm{~m})$ and aspect ratios less than or equal to 4 -to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) Comments: Diaphragms are concrete.
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & O & O \end{array}$	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5) Comments: Diaphragms are concrete.
Connections	
Description	
$\begin{array}{llll} C & N C & N / A & U \\ C & C & \bullet & O \end{array}$	UPLIFT AT PILE CAPS: Pile caps have top reinforcement, and piles are anchored to the pile caps. (Commentary: Sec. A.5.3.8. Tier 2: Sec. 5.7.3.5) Comments: Foundations are shallow.

Appendix C

Tier 1 Calculations

SIMPSON GUMPERTZ \& HEGER
| Engineering of Structures
and Building Enclosures
SHEET NO. \qquad
PROJECT NO. 197042.00
DATE \qquad 11.18.2019
CHECKED BY \qquad KDP

CLIENT	UCSF
sUbJect	LPPI - 4 Story Annex: Flat Load

MINIMUM UNIFORMLY DISTRIBUTED LIVE LOADS, L_{o}, AND MINIMUM CONCENTRATED LIVE LOADS ${ }^{9}$

AND MINIMUM CONCENTRATED LIVE LOADS ${ }^{\mathbf{9}}$		
OCCUPANCY OR USE	UNIFORM (psf)	CONCENTRATED (Ibs.)
17. Hospitals		
Corridors above first floor	80	1,000
Operating rooms, laboratories	60	1,000
Patient rooms	40	1,000

Engineering of Structures and Building Enclosures
CLIENT UCSF
SUBJECT LPPI-4 story annex: Typ Slab weight

SHEET NO.
PROJECT NO.
197042.00

DATE $\quad 11 / 18 / 2019$
BY AS
CHECKED KDP
Slab Effective Weight

Floor Type	Effective Thickness (in)	Net Weight (psf)
Type A (J1, J2, J3, J4, J5)	5.1	63.2
Type B (J6)	6.7	84.0
Type C (Type A - 5" slab)	7.1	88.2
Type 1 (S7)	4.5	56.3
Type 2 (S2, 3, 6)	5.0	62.5
Type 3 (S1, 4, 5)	5.5	68.8

Floor	Floor slab type	Net Area sq. ft.	Net weight psf	Total weight kips
Floor 2	Type A	4478	63.2	283
	Type B	0	84.0	0
	Type C	255	88.2	22
	Type 1	0	56.3	0
	Type 2	432.8	62.5	27
	Type 3	2261	68.8	155
		Length (ft)	Weight (plf)	
	Bridging	226	45.3	10
	Int. beams	421	300.0	126
	SUM	7427		624
Floor 3	Type A	4576	63.2	289
	Type B	0	84.0	0
	Type C	157.5	88.2	14
	Type 1	0	56.3	0
	Type 2	432.8	62.5	27
	Type 3	2261	68.8	155
		Length (ft)	Weight (plf)	
	Bridging	226	45.3	10
	Int. beams	421	300.0	126
	SUM	7427		622
Floor 4	Type A	3844	63.2	243
	Type B	154	84.0	13
	Type C	735	88.2	65
	Type 1	0	56.3	0
	Type 2	432.8	62.5	27
	Type 3	2261	68.8	155
	10' cantilever	549	93.8	514
		Length (ft)	Weight (plf)	
	Bridging	226	45.3	10
	Int. beams	421	300.0	126
	SUM	7976		1154
Roof	Type A	4579	63.2	289
	Type B	154	84.0	13
	Type C	0	88.2	0
	Type 1	0	56.3	0
	Type 2	614	62.5	38
	Type 3	2080	68.8	143
	Penthouse			40
		Length (ft)	Weight (plf)	
	Bridging	226	45.3	10
	Int. beams	421	300.0	126
	SUM	7427		660

\|otal floor area	30257 sq.ft.
Total floor weight	3060 kip

Partition psf	MEP psf	Floor finish and Misc psf
10	5	5
74	37	37

Partition psf	MEP psf	Floor finish and Misc psf
10	5	5
74	37	37

Partition psf	MEP psf	Floor finish and Misc psf
10	5	5
80	40	40

Partition psf	MEP psf	Floor finish and Misc psf
5	5	5
37	37	37

Partition	MEP	Floor finish and Misc
265	151	151

Calculations below are used to estimate unit weight of walls per foot

Level	exterior wall elevation	$\begin{gathered} \hline \text { avg height } \\ \text { ft } \\ \hline \end{gathered}$	Gross vol wall cu.ft	openings cu.ft	net weight kip	unit load kip/ft
Typical	punched wall	11.5	95.8	19.5	11.5	1.15
	10" wall	11.5	95.8	0	14.4	1.44
	8" wall	11.5	76.7	0	11.5	1.15
Roof	punched wall	8.75	72.9	9.7	9.5	0.95
	10" wall	8.75	72.9	0	10.9	1.09
	8" wall	8.75	58.3	0	8.8	0.88
Column		Level	Height	Cross section	net weight	
			ft	sq.ft.	kip per Col	
		Typ	11.5	1.56	2.68	
		Roof	8.75	1.17	1.53	

Using the UDL, below is the self weight of walls and columns

SIMPSON GUMPERTZ \& HEGER
Engineering of Structures
and Building Enclosures
CLIENT UCSF
SUBJECT LPPI-4 Story Annex: General building information

SHEET NO.	
PROJECT NO.	197042.00
DATE	11/19/2019
BY	AS
CHECKED	KDP

General Building Information			
	Value	Units	Reference Document
Total building height	46.0	ft	Including penthouse
Effective Seismic Weight	6295	kips	
Compliance (per CBC)			2016 CBC 3412A.2.3
Structural Performance Level	S-5	BSE - C	2019 CBC Table 317.5
Non-structural	$\mathrm{N}-\mathrm{D}$		
Lateral System per ASCE 41	C 2		
Risk Category	III		CBC 1604.5
S XS, BSE-C	1.843	g	
S $_{\text {X1, BSE-c }}$	0.847	g	
Site Class	C		
Ct	0.02		
beta	0.75		
height	46	ft	Including penthouse
Time Period T	0.35	s	
Sa	1.843	g	
C	1		ASCE 41-17, Table 4-7
Base Shear	11601	kips	Base Shear

Floor	Wi kip	$\mathbf{(h i)}^{\mathbf{k}}$ $\mathbf{f t}$	Wi (hi) $^{\mathbf{k}}$	Cvi	Fi $\mathbf{k i p}$	Vi kip
	1318	11.5	15155.5	0.21	2,429	2,429
Floor 4	2052	11.5	23601.8	0.33	3,782	6,211
Floor 3	1455	11.5	16734.9	0.23	2,682	8,893
Floor 2	1469	11.5	16895.1	0.23	2,708	11,601

*K = 1 for 6 stories or lower per 4.4.2.2

| Engineering of Structures
and Building Enclosures
CLIENT UCSF
SUBJECT LPPI-4 Story Annex: General building information

SHEET NO.	
PROJECT NO.	197042.00
DATE	11/19/2019
BY	AS
CHECKED	KDP

Shear Stress in Shear Walls
per ASCE 41-17 4.4.3.3 Ms 4.5

Floor	Story Shere at level $\mathrm{j}\left(\mathrm{V}_{\mathrm{j}}\right)$ kips	N-S Loading	
		Area	$v_{j}{ }^{\text {avg }}$
		sq.ft	ksi
Roof	2,429	84.8	0.04
Floor 4	6,211	98.3	0.10
Floor 3	8,893	89.6	0.15
Floor 2	11,601	103.1	0.17

E-W Loading	
length of wall	$v_{j}^{\text {avg }}$
ft	ksi
113	0.03
124	0.08
113	0.12
190	0.09

SIMPSON GUMPERTZ \& HEGER	SHEET NO.	197042.00
	PROJECT NO	
Engineering of Structures and Building Enclosures	DATE	11/19/2019
CLIENT UCSF	BY	AS
SUBJECT LPPI - 4 story Annex: Columns	CHECKED	KDP

Column Shear Capacity Check

Square Columns

side in	vertical bars	bar size in	Mpr k-ft	2Mp/L	Vc kips	Av sq in	spacing in	Vs kips	V kips
14	4	1.25	115	24.2	16.1	0.22	10	10.2	26.3
12	4	1.125	71	14.9	10.2	0.22	10	8.7	18.9

[^0]: ${ }^{1}$ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

