

Rating form completed by:

RUTHERFORD + CHEKENE ruthchek.com Evaluator: BL, CLP. EFA

Date: 10/31/2020

Text in green is to be part of UCSF building database and may be part of UCOP database.

DATE: 2020-10-31

UCSF building seismic ratings UCSF Rutter Center

CAAN #3003 1675 Owens Street, San Francisco, CA 94158 UCSF Campus: Mission Bay

Plan

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	IV	Findings based on drawing review and ASCE 41-17 Tier 1 evaluation ¹
Rating basis	Tier 1	ASCE 41-17
Date of rating	2020	
Recommended UCSF priority category for retrofit	None	Priority A=Retrofit ASAP Priority B=Retrofit at next permit application for modification
Ballpark total project cost to retrofit to IV rating	N/A	See recommendations on further evaluation and retrofit
Is 2018-2019 rating required by UCOP?	Yes	Does not have a documented previous review
Further evaluation recommended?	No	

¹ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

Building information used in this evaluation

- Architectural drawings entitled "UCSF Mission Bay Campus Community Center Building 21B," by MBT Associates, dated 23 August 2002 (160 sheets).
- Structural drawings entitled "UCSF Mission Bay Campus Community Center Building 21B," by Forell/Elsesser Engineers, Inc., dated 23 August 2002 (37 sheets)
- Shop drawing submittal from Nippon Steel Corporation dated 10/4/2002 (10 pages).
- Submittal entitled "Cyclic Tests of Nippon Steel Corporation Unbonded Braces," by Nippon Steel Corporation, 25 January 2001 (42 pages prepared for Arup and OSHPD for Kaiser Santa Clara Medical Center and submitted 25 Feb 2003 for review).
- Submittal entitled "Design Calculations for Unbonded Braces," by Ian Aiken, dated 6 Feb 2003 and submitted for review 28 February 2003.
- Specification entitled "UCSF Mission Bay Campus Community Center Building 21B, Specifications, Construction Documents," dated 13 November 2002. 2 Volumes. (1,016 pages; R+C reviewed BRB Specification Section 13085).
- "Table 1 UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Site Hazards," by John Egan dated 18 December 2019.
- Calculations provided by Forell/Elsesser.
 - "90% Construction Document Structural Calculations, Volume 1 of 2, UCSF Mission Bay Campus Community Center (Bldg 21B), by Forell/Elsesser, dated 8 November 2000.
 - "90% Construction Document Structural Calculations, Volume 2 of 2, UCSF Mission Bay Campus Community Center (Bldg 21B), by Forell/Elsesser, dated 8 November 2000.
- Geotechnical report entitled "Geotechnical Investigation, Building 21B, UCSF Mission Bay, San Francisco, CA," by Treadwell & Rollo, dated 18 November 1999.

Additional building information known to exist

UCSF indicated they have extensive project files; the Nippon submittals were retrieved from their archives at our request.

Scope for completing this form

The architectural and structural drawings for the original 2002 construction are used as the basis for the completed ASCE 41-17 Tier 1 evaluation. The building was designed per the 1998 California Building Code (CBC) which uses the underlying provisions of the 1997 Uniform Building Code (UBC). The Nippon Steel Corporation submittals were reviewed. A site visit was not part of this scope of work due to shelter-in-place orders; photographs presented here were extracted from Google Earth and Google Street View. The ASCE 41-17 criterion and the UC Facilities Manual, UC Seismic Program Guidelines criterion for a BRBF benchmark building are that the design complies with the 2006 International Building Code (IBC) which is referenced by the 2007 California Building Code (CBC). Several Tier 1 type checks were made to assess whether the design is in conformance with the benchmark 2007 CBC/2006 IBC that was based on provisions in ASCE 7-05 and the AISC 341-05 underlying provisions for steel buildings. An ASCE 41-17 Tier 1 evaluation was also performed for comparison.

Brief description of structure

The Rutter Center (originally designated Building 21B) houses the UCSF Mission Bay Campus Community Center and various athletic facilities. It is located at 1675 Owens Street and abuts an adjacent parking garage (Building 21A) along a portion of the west side and has pedestrian walkways to the north and east. The building has many irregularities including large floor openings, an atrium, two elevated swimming pools, an outdoor roof deck, a decorative "clock" tower, offset low and high roof levels, a partial 3rd floor, and a large gym with long span girders. It is a steel framed building with Buckling Restrained Braced Frames (BRBF) for the lateral force-resisting system in both directions. It was constructed in 2002 before design standards were adopted for this type of lateral system. The footprint at the ground floor is 275'-0" in the north-south direction and 225'-2" in the east-west direction. While

there is construction at several levels (2nd, 3rd, 4th, low roof, high roof, tower roof), we have idealized it as a threestory building for the purposes of this Tier 1 check and considered the 2nd, 4th, and combined low and high roof levels as the structural levels of the building. It was constructed on a flat site with poor soils that are subject to liquefaction but founded on piles driven to refusal. There is public assembly space on the first floor, and there are athletic facilities throughout the building. It appears there may be heavy mechanical equipment in the building, but mechanical drawings were not available for review to assign specific weights for mechanical equipment. The exterior cladding consists of EIFS panels.

Identification of levels: The top of concrete building levels are designated as the first floor (EL. 0.0'), the second floor (EL. 22.0'), the third floor (EL. 36.0'), the fourth floor (EL. 50.0'), the Low Roof (EL. 79.4'), the top of steel at low edge of sloping High Roof (EL. 83.5'), and top of steel at Tower Roof (EL. 142.33'). The exterior grade is flat. For this evaluation, we have assigned the partial third floor weights to the fourth floor level, combined the Low and High Roof weights at the Low Roof Level, and neglected the Tower weights above the Low Roof as this structure is braced independently with conventional steel braces.

<u>Foundation system</u>: The structural drawings state the design was based on Soil Type E. The building is founded on pile caps supported by 14" square precast prestressed concrete piles driven to an elevation of approximately -87.0 ft. According to "Table 1 - UCSF Pre-2006 BRBF Buildings – Geotechnical Characteristics and Site Hazards," dated 18 December 2019 by John Egan, the piles were driven to refusal. The pile caps are supported by 2, 3, or 4 piles. The slab-on-grade is comprised of a 12" thick concrete slab. The column grid is irregular; column spacing ranges from 15'-4" to 32'-0".

Structural system for vertical (gravity) load: Rutter Center contains a complete gravity load-bearing steel framing system with an irregular column grid due to the large atrium, high ceiling gym, partial third floor, Low and High Roof levels, suspended swimming pools, and other features of the building. The column spacing ranges from 15'-4" to 32'-0". Columns and beams are all rolled wide flange shapes except for several built-up plate girders that function as transfer girders or large spans. The typical floor framing consists of 3" metal deck with 4 ½" of normal weight concrete fill that typically spans between 7ft to 11 ft between steel beams. There are several deck sections, but the typical deck profile is 18 gage Verco W3 Formlok deck or similar. Some framing members have 3/4" dia. headed studs. The High Roof has metal deck without fill that spans to steel trusses in both directions. The Tower structure is 15'-4" square in plan and rises to a height of 142'-4" and is braced independently above the level of the Low Roof with conventional steel braces.

Structural system for lateral forces: This is a Model Building Type S2 steel braced frame with a combination of flexible and rigid diaphragms in both directions. The lateral force-resisting system is comprised of Buckling Restrained Braced Frames (BRBF) in both the N-S and E-W directions. In the longitudinal (N-S) direction, the building has ten braced bays along five grid lines at the first story. This varies over the height with six brace bays from the fourth-floor level to the Low Roof level. Two braced bays on Gridine J only extend from the fourth-floor level to the Low Roof level and are discontinuous below. In the transverse (E-W) direction, the building has thirteen braced bays along seven grid lines at the first story. This varies over the height with six braced bays from the fourth-floor level to either the Low or High Roof levels. One bay of braces on Gridline 3 only extends from the third-floor level to the Low Roof level and is discontinuous below. The braces are all concentric and include a mix of single diagonal braces, V-braces, and chevron braces. Some braces are located to take loads from the partial third floor areas or the two suspended swimming pools at the second and fourth floor levels. Other braces are located along the perimeter of the gym area above at the fourth floor. Braces are reasonably well distributed in both directions with a maximum diaphragm span of 117 ft. The third story has only partial diaphragms. Braces that run through the high bay spaces where there are no diaphragms run the full distance from the second floor to the third floor. As a result, there are no multi-tier braced frames. The floor diaphragms typically consist of 3" deep 18 gage metal deck with 4 ½ normal weight concrete fill and ¾" diameter shear studs. Beam connections along the grid lines with braced bays typically include double rows of bolts or multiple rows of bolts with web doubler plates.

The BRB elements were provided by the Nippon Steel Corporation and include a mix of flat bars and cross-shaped brace elements encased in HSS tubes filled with concrete. The flat bar is Type "-" and the cross-shaped is Type "+". The outer tubes are all either HSS10x10, HSS12x12, or HSS14x14. Based on the BRB schedule and the values indicated on the BRB elevations, the BRB maximum brace yield force ranges from 150 kips to 450 kips. Uniaxial cyclic testing

was performed on the braces for another project for Kaiser Permanente; no subassemblage test specimen testing of the BRB assemblies is indicated in the Nippon submittals.

The building has BRB elements by Nippon Steel Corporation. Footnote "f" in the UC Facilities Manual table for Benchmark Building Codes and Standards indicates there is no UBC benchmark year for BRBs. The first consensus standard in the U.S. for BRBFs was AISC 341-05, which was referenced by ASCE 7-05, which was in turn referenced by the 2006 IBC. This project was designed in 2002 prior to inclusion of BRB design provisions in the code, but the project would have required a peer review and the 2001 AISC/SEAOC Recommended Provisions for Buckling-Restrained Frames (which led to the later standards) were published in October 2001 and may have been available in draft form at the time of this design. The design used an *R* value of 6.4 and an *I* value of 1.0 with a design base shear of *V=0.14W*. The design appears to have generally followed the AISC/SEAOC recommendations that were later adopted except that subassemblage test specimen testing of the BRB assemblies was not performed as part of this project.

Building condition: Unknown. No site visit was made due to shelter-in-place orders.

Building response in 1989 Loma Prieta Earthquake: Not applicable; built after the Loma-Prieta Earthquake.

Brief description of seismic deficiencies and expected seismic performance including mechanism of nonlinear response and structural behavior modes

Identified and potential seismic deficiencies of the building include the following:

- The ASCE 7-05 check for the beams of a sample BRB chevron-braced bay indicates that the members have acceptable DCRs using the criteria from the benchmark code.
- A comparison with *UC Seismic Safety Policy* requirements for Seismic Performance Level III was made by comparing the values for BSE-1NS obtained from J. Egan to the ASCE 7-05 S_{DS} values. On this basis, the building does not qualify for the SPL III rating.
- The Tier 1 Quick Check for the average axial stress in the braces shows the braces are overstressed at all floors in both directions. This is largely because the forces used for the ASCE 41-17 check are significantly higher than those used for design, but they are also higher than would be required by current code.
- The BRB testing by Nippon in 2001 was limited to uniaxial cyclic testing of the braces. No subassemblage test specimen tests were performed of the BRB brace assemblies.
- Per "Table 1 UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Site Hazards" by Egan (2019), the mapped liquefaction potential is very high but Note jj states "Available design drawings indicate buildings are supported on piles driven to refusal, so liquefaction-related hazard to building is probably low." Liquefaction has not been included as a structural deficiency for this evaluation.
- Some of the columns do not meet the criteria for compact sections.
- The building has many BRB braced bays in each direction but also has numerous irregularities, making it difficult to make a fair assessment of the structure with Tier 1 hand calculations. Our results are influenced by the simplifications made for this Tier 1 check. To aid our review, we obtained the original calculations from the structural engineer of record which were based on three-dimensional modeling and provide a more refined characterization of the load distribution throughout the braces. Details are described ahead.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?	
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	N	Openings at shear walls (concrete or masonry)	N	
Load path	N	Liquefaction	N	
Adjacent buildings	Ν	Slope failure	N	
Weak story	Ν	Surface fault rupture	N	
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N	
Geometry (vertical irregularities)	Y	URM wall height-to-thickness ratio	N	
Torsion	Ν	URM parapets or cornices	N	
Mass – vertical irregularity	Y	URM chimney	N	
Cripple walls	Ν	Heavy partitions braced by ceilings	N	
Wood sills (bolting)	N	Appendages	N	
Diaphragm continuity	Ν			

Summary of review of nonstructural life-safety concerns, including at exit routes.²

Unknown. No site visit was conducted due to shelter-in-place orders.

UCOP nonstructural checklist item	Life safety hazard?	UCOP nonstructural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	Unknown	Unrestrained hazardous materials storage	Unknown
Heavy masonry or stone veneer above exit ways and public access areas	Unknown	Masonry chimneys	Unknown
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	Unknown	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	Unknown

Basis of Seismic Performance Level rating

Rutter Center has a rectangular plan with many interior irregular features. The braced bays are well-spaced in both directions, but the building has a large atrium, two elevated swimming pools, and elevated mechanical room, large transfer girders, long spans at the gym, roof trusses, offset floor levels, and other geometric irregularities.

Based on reviews of other BRBFs designed prior to the adoption to AISC 341-05 and later standards, there are two potential issues of concern—the design force level and the rigor of the BRB testing done by the vendor. Per the attached general notes, using Soil Type S_e, an *R* factor of 6.4, and an Importance Factor *I* = 1.0, the design base shear was V=0.14W. Per the benchmark ASCE 7-05, assuming *I* = 1.25 and *R* = 8, the design base shear is the lower of V/W = $[S_{DS} / (R / I_e)] = [0.9)/(8 / 1.25)] = 0.14g$ (governs) or $V/W = [S_{D1} / (T (R/I_e)] = [1.014 / (0.51 x (8/1.25))] = 0.31g$, where $T = C_t h_n^{3/4} = 0.02 (75)^{3/4} = 0.51$ sec. This is the same as the design base shear. Per the current ASCE 7-16, assuming *I* = 1.25 and *R* = 8, the design base shear is the lower of $V/W = [S_{DS} / (R / I_e)] = [1.3)/(8 / 1.25)] = 0.20g$ (governs) or $V/W = [S_{D1} / (T (R/I_e)] = [1.3)/(8 / 1.25)] = 0.20g$ (governs) or $V/W = [S_{D1} / (T (R/I_e)] = [1.68 / (0.51 x (8/1.25)] = 0.51g$, where $T = C_t h_n^{3/4} = 0.02 (75)^{3/4} = 0.51$ sec. Thus, the design base shear was the same as the benchmark code but lower than would be required by current code (0.14g vs 0.20g). On this basis, the building would not qualify for a Seismic Performance Level Rating of III.

² For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where nonstructural hazards may occur.

The average brace axial stresses computed using the benchmark ASCE 7-05 code are at 0.9Fy at the top story but within acceptable limits at the lower floors. In addition, the beams of a sample BRB chevron-braced bay were checked in detail using ASCE 7-05 and found to be within acceptable limits. Connections are adequate to develop the adjusted strength of the brace. There are many issues related to noncompact column sections, irregular framing, diaphragm openings, BRB discontinuities, offset floors that are difficult to judge based on this Tier 1 check using hand calculations. Various simplifications of floor levels and lumped masses were made for this Tier 1 check and these simplifications may negatively affect the rating, particularly at the upper story where the average axial stress in the braces appears higher than the allowable. As a result, we obtained the original structural calculations for the building which were based on a three-dimensional model. They have the same base shear as ASCE 7-05 and show a target demand-capacity ratio (DCR) of about 0.8. Based on model results where the DCR was over this they enlarged the BRB core area, with the resulting largest DCR of about 0.84. They also have a more refined determination of seismic weight at each level. For comparison, we scaled the ASCE 41-17 Tier 1 results by the weights in the original calculations and by a factor of 0.8 to represent the calculation typical maximum DCR. This resulted in an adjusted Tier 1 maximum DCR of 1.09 at the top story in the north-south direction and a maximum of 0.82 at the second story in the east-west direction.

Although there are noncompact sections and geometric irregularities, the building is assigned a Seismic Performance Level Rating of IV as it meets the ASCE 7-05 benchmark requirements for force demands and generally meets the underlying AISC 341-05 detailing requirements.

Recommendations for further evaluation or retrofit

No additional assessment is required.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on 23 June 2020 and were unanimous that the Seismic Performance Level Rating is Level IV. No additional assessment is required.

Additional building data	Entry	Notes
Latitude	37.76808	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Longitude	-122.39301	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Are there other structures besides this one under the same CAAN#	No	
Number of stories above lowest perimeter grade	3	Considering 2 nd , 4 th and combined roof levels as 3 structural levels
Number of stories (basements) below lowest perimeter grade	0	
Building occupiable area (OGSF)	153,879	??
Risk Category per 2019 CBC 1604.5	III	
Building structural height, h _n	75.0 ft	Structural height defined per ASCE 7-16 Section 11.2
Coefficient for period, Ct	0.020	Estimated using ASCE 41-17 equation 4-4 and 7- 18
Coefficient for period, eta	0.75	Estimated using ASCE 41-17 equation 4-4 and 7- 18
Estimated fundamental period	0.51 sec	Estimated using ASCE 41-17 equation 4-4 and 7- 18

Site data		
975-year hazard parameters S_s , S_1	1.380g, 0.532g	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Site class	E	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Site class basis	Estimated	
Site parameters F_a , F_v	1.3, 4.2	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Ground motion parameters S _{cs} , S _{c1}	1.794g, 2.236g	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
S_a at building period	1.794g	
Site V _{s30}	308 m/s	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
<i>Vs30</i> basis	Estimated	
Liquefaction potential/basis	No	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019). Note jj
Landslide potential/basis	No	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Active fault-rupture hazard identified at site?	No	UCSF Pre-2006 BRBF Buildings Geotechnical Characteristics and Hazards, Egan (2019)
Site-specific ground motion study?	No	
Applicable code		
Applicable code or approx. date of original construction	Built: 2003 Code: 1998 CBC/ 1997 UBC	
Applicable code for partial retrofit	None	
Applicable code for full retrofit	None	No full retrofit known
Model building data		
Model building type north-south	S2 (BRB) Steel Braced Frames with Rigid Diaphragms	
Model building type east-west	S2 (BRB) Steel Braced Frames with Rigid Diaphragms	
FEMA P-154 score	N/A	Not applicable as an ASCE 41 Tier 1 evaluation was performed
Previous ratings		
Most recent rating	-	
Date of most recent rating	-	

2 nd most recent rating	-	
Date of 2 nd most recent rating	-	
3 rd most recent rating	-	
Date of 3 rd most recent rating	-	
Appendices		
Appendices ASCE 41 Tier 1 checklist included		
Appendices ASCE 41 Tier 1 checklist included here?	Var	Defente attacked ak addist file
Appendices ASCE 41 Tier 1 checklist included here?	Yes	Refer to attached checklist file

DESIGN BASIS THE DESIN IS IN ACCORDANCE WITH THE CALIFORNIA BUILDING CODE, 1998 EDITION, AND PROVIDES FOR THE FOLLOWING LOADS: LVE LANDS ROOFS 20 PSF FLOORS, CORRIDORS, STARS 100 PSF ROORS ROOFS 100 PSF ROORS, CORRIDORS, STARS 100 PSF ROORS, CORRIDORS, STARS STAGE 123 PSF ROORS, CORRIDORS, STARS 100 PSF ROORS, CORRIDORS, STARS STAGE 123 PSF ROORS, CORRIDORS, STARS 100 PSF ROORS, CORRIDORS, STARS WEDIANDLAND, ROOM 100 PSF WIND LOADS 1998 CBC, TO MHH ZONE, EXPOSURE C SSEMC LLAND 2 Y = 0.1W (200E 4, SQURCE TYPE A, SQL TYPE SA, I=1.0, No=1.0, No=1.08) LATERAL ENVIRON INTEL INTERLIS SHALL CONFORM TO THE FOLLOWING: WILL CONFORM TO THE FOLLOWING: WILL SAND ANGLES STEL INTERLIS SHALL CONFORM TO THE FOLLOWING: WILL STARD, STARL SHALL CONFORM TO THE FOLLOWING: WILL STARD, STARL SHALL CONFORM TO ASC SPECIFICATIONS FOR THE DESIGN, FARINGATION, STARL SHALL CONFORM TO ASC SPECIFICATIONS FOR THE DESIGN, FARINGATION, STARL SHALL CONFORM TO ASC SPECIFICATIONS FOR THE DESIGN, FARINGATION, EDITS (M.B.) ALS TRUCTURAL STEEL SHALL CONFORM TO ASC SPECIFICATIONS FOR THE DESIGN, FARINGATION, CORE AND ASC SHALL CONFORM TO ASC SPECIFICATIONS, PROVIDE STARL SHALL CONFORM TO ASC SPECIFICATIONS, PROVIDED STARL SHALL CONFORM TO ASC SPECIFICATIONS, PROVIDED SHALL		
THE DESIGN IS IN ACCORDINCE WITH THE CALFORMA BUILDING CODE, 1998 EDITION, AND PROVIDES FOR THE FOLLOWING LODG: INCOMES, CORRIDORS, STARES 20 PSF 100 PS	DESIGN BASIS	
LIVE LOADS ROOTS LOORS, CORRIDORS, STAIRS 100 PSF MUDTORUM 100 PSF 100 PSF	THE DESIGN IS IN ACCORDANCE WITH THE 1998 EDITION, AND PROVIDES FOR THE FOL	CALIFORNIA BUILDING CODE, LLOWING LOADS:
WIND LOADS 1998 CBC, 70 MPH ZONE, EXPOSURE C SEISMIC LOADS Y = 0.14W (ZONE 4, SOURCE TYPE A, SOUL TYPE Se, I=10, Ng=1.0, Nv=1.08) LATERAL RESISTING SYSTEM: UNBORNED BRACED FRAME, R = 6.4 STRUCTURAL STEEL REFER TO SPECIFICATIONS FOR COMPLETE REQUIREMENTS. STEEL MATERNAL SHALL CONFORM TO THE FOLLOWING: WIDE FLANCE SHAPES ASTM A322, GRADE 50 ASTM A322, GRADE 50 ASTM A322, GRADE 50 ASTM A323, GRADE 8 BASE PLATES ASTM A323, GRADE 8 BASE PLATES ASTM A330, GRADE 9 BASE PLATES ASTM A300, GRADE 80 BASE PLATES BASE PLATES BAS	LIVE LOADS ROOFS FLOORS, CORRIDORS, STAIRS GYMNASIUM AUDITORIUM STAGE OFFICES MECHANICAL ROOM	20 PSF 100 PSF 50 PSF 50 PSF 125 PSF 80 PSF 100 PSF
SESMIC LOADS V = 0.14W (20NE 4, SOURCE TYPE A, SOIL TYPE Se, I=1.0, No=1.0, Nv=1.08) LIERUR RESINTS STSTEM: UNBONIEDE BRACED FRAME, R = 6.4 STRUCTURAL STALL CONFORM TO THE FOLLOWIC: WITE FLANCE SHAPES REFER TO SPECIFICATIONS FOR COMPLETE REQUIREMENTS. STEL MATERIALS SHALL CONFORM TO THE FOLLOWIC: WITE FLANCE SHAPES STM ASS2, GRADE 50 ASTM ASG2, GRADE 50 ASTM ASG7, GRADE 5 BASE FLATES ASTM ASG7, GRADE 5 ASTM ASG7, GRADE 5 BASE FLATES ASTM ASG7, GRADE 5 ASTM ASG7, CRANE 8 ASTM ASG7,	WIND LOADS 1998 CBC, 70 MPH ZONE, EXPOSURE C	
STRUCTURAL STEEL REFER TO SPECIFICATIONS FOR COMPLETE REQUIREMENTS. STELL MATERIALS SHALL CONFORM TO THE FOLLOWING: WIDE FUNNCE SHAPES ASTM A922, GRADE 50 PLATES ASTM A922, GRADE 50 CHANNELS AND ANGLES ASTM A53, GRADE B PRES ASTM A53, GRADE B PRES ASTM A53, GRADE B PRES ASTM A30, OR A35 ANCHNE BOLTS (M.B.) ASTM A307 OR A35 MACHNE BOLTS (M.B.) ASTM A307 OR BOLTS ANCHOR BOLTS (M.B.) ASTM A307 OR BOLTS MCILDED STRENCTH BOLTS (M.S.B.) ASTM A307 OR BOLTS ANTHOR BOLTS (M.B.) ASTM A307 OR BOLTS ASTM A108, STRUCTURAL STEEL SHALL CONFORM TO AISC SPECIFICATIONS FOR THE DESIGN, FABRICATE REAM APPROVED SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS ONL? WELDING SHALL OWN GIND AREA SMOOTH WHERE EXCOMPORATY BACK-UP PLATES ATTER CP WELDING AND GRIND AREA SMOOTH WHERE EXCOMPORATY BACK-UP PLATES ATER CP WELDING AND GRIND AREA SMOOTH W	SEISMIC LOADS V = 0.14W (ZONE 4, SOURCE TYPE A, SOI LATERAL RESISTING SYSTEM: UNBONDED BR	IL TYPE Se, I=1.0, Na=1.0, Nv=1.08) ACED FRAME, R = 6.4
STRUCTURAL STEEL REFER TO SPECIFICATIONS FOR COMPLETE REQUIREMENTS. STEL MATERIALS SHALL CONFORM TO THE FOLLOWING: WIDE FUNCE SHAPES ASTM A592, GRADE 50 ASTM A50, GRADE 5 ASTM A51, GRADE 5 AST		
REFER TO SPECIFICATIONS FOR COMPLETE REQUIREMENTS. STEL MATERIALS SHALL CONFORM TO THE FOLLOWING: WIDE FLANGE SHAPES ASTM 4992, GRADE 50 ASTM 4392, GRADE 50 CHANNELS AND ANGLES ASTM 4357, GRADE 50 CHANNELS AND ANGLES ASTM 4350, GRADE B BASE PLATES ASTM 4303, GRADE B BASE PLATES ASTM 4307, OR A36 MACHINE BOLTS (M.B.) ASTM 4307 OR A36 MACHINE BOLTS (M.B.) ASTM 4325-SC, N, X MELDED STUDS ASTM A108 ALL STRUCTURAL STEEL SHALL CONFORM TO ASC SPECIFICATIONS FOR THE DESIGN, FABRICATION, ERECTION OF STRUCTURAL STEEL FOR BUILDINGS. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FOR MAPROVED SHOP DRAWINGS FOR THE DESIGN, FABRICATION, WHERE EXENDED TO UNFERENTIATION (FOR WELD CANTONS; FEBAOVE PLATES AFTER CP WELDING AND GRIND AREA SMOOTH WHERE EXPOSED. IN CENERAL, NO ATTEMPT HAS BEEN MADE TO DIFFERENTIATE BETWEEN SHOP AND FIELD WELDING OFARTONS. WHERE FIELD WELDING IS SPECIFICALLY NOTED, THE DESIGNATION IS GURN AS A SUGGESTED CONSTRUCTION PROCEDURE ONLY. TRADE CONTRACTOR SHALL DETERMINE SUITABULTY OF SHOP OR FIELD WELDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING SHALL BE INSPECTED BY AN APPROVED TESTING ALL SHOP AND FIELD WELDING SHALL BE INSPECTED BY AN APPROVED TESTING AND ROUGH FDEOS SHALL BE SHALL BE SAUGT TICHT ONLY UNLESS OTHERWISE NOTED ON TO CUT THROUGH PRECED STALL PRECESS SHALL BE GROUND (1/32 UNCH MIN.) BRIGHT METAL. ALL SHOP AND FIELD SHALL BE SAULD FLOTING OF BORING, ALL SLAG AND ROUGH DEASS SHALL BE SMULT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. SET SPECIFICATION FOR SPECIAL BY AND/FACTURED SUPPONTELL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIL	STRUCTURAL STEEL	
STEL MATERIALS SHALL CONFORM TO THE FOLLOWING: WIDE FLANCE SHAPES ASTM A392, GRADE 50 ASTM A362, GRADE 50 ASTM A36, GRADE B BASE PLATES ASTM A360, GRADE B BASE PLATES ASTM A360, GRADE B BASE PLATES ASTM A360, GRADE B BASE PLATES ASTM A367, GRADE 50 ANCHOR BOLTS (M.B.) ASTM A327, GRADE 50 ANCHOR BOLTS (M.B.) ASTM A327, GRADE 50 ANCHOR BOLTS (M.B.) ASTM A327 HICH STRENCHT BOLTS (H.S.B.) ASTM A327 ASTM A307 OR A36 ALL STRUCTURAL STEEL SHALL CONFORM TO AISC SPECIFICATIONS FOR THE DESIGN, FABRICATION, REPECTION OF STRUCTURAL STEEL FOR BUILDINGS. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATIOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATIOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATIOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATIOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATIOR SHALL SUBMIT SHOP DRAWINGS ONLY. WELDING SHALL ONLY BE DONE BY CERTIFIED WELDINGS, REMOVE PLATES ATTER CP WELDING SHALL SUBMIT SHOP DRAWINGS ONLY. WELDING SHALL ONLY BE DONE BY CERTIFIED WELDINGS, REMOVE FLATES ATTER CP WELDING AND GRIND AREA SMOOTH WHERE EXPOSED. IN GENERAL, NO ATTEMPT HAS BEEN MADE TO DIFFERENTIATE BETWEEN SHOP AND FIELD WELDING OPERATIONS. WHERE FIELD WELDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING SHALL BE INSPECTED DY AN APPROVED TESTING LABORATORY. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17, 1998 CBC, APPLY TO ALL WELDING. DO NOT CUT THROUGH ERECTED STEEL PLATES, BOLTS, ANGLES OR SHAPES MITHOUT PREMISSION OF THE ARCHITECT. ATTER CUTING OR BORMS, ALL SLG AND ROUGH EDGES SHALL BE WECHANICALLY REMOVED TO PROVIDE A SMOOTH EDGE. ALL SURFACES CUT BY THERMAL PROCESSES SHALL BE GROUND (1/32 INCH MIN.) BRIGHT METAL. ALL HIGH STRENGTH BOLTS SHALL BE SAUG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNERCETON BESIGNED AS SLIP CRITICAL SHALL BE FULLY ENSIGNED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER I IN ACCORDANCE WITH THE	REFER TO SPECIFICATIONS FOR COMPLETE RI	EQUIREMENTS.
ALL STRUCTURAL STEEL SHALL CONFORM TO AISC SPECIFICATIONS FOR THE DESIGN, FABRICATION, ERECTION OF STRUCTURAL STEEL FOR BUILDINGS. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS ONLY. WELDING SHALL ONLY BE DONE BY CERTIFIED WELDERS. ALL WELDING SHALL CONFORM TO AWS SPECIFICATIONS. PROVIDE TEMPORARY BACK-UP PLATES OR WELDS AT ALL COMPLETE PRETRATION (GP) WELD LOCATIONS; REMOVE PLATES ATTER CP WELDING AND GRIND AREA SMOOTH WHERE EXPOSED. IN GENERAL, NO ATTEMPT HAS BEEN MADE TO DIFFERENTIATE BETWEEN SHOP AND FIELD WELDING OPERATIONS. WHERE FIELD WELDING IS SPECIFICALLY NOTED, THE DESIGNATION IS GVEN AS SUGGESTED CONSTRUCTION PROCEDURE ONLY. TRADE CONTRACTORS SHALL DETERMINE SUITABILITY OF SHOP OR FIELD WELDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING SHOLDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING SHOLDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING REQUIREMENTS OF CHAPTER 17, 1985 DOG, APPLY TO ALL WELDING. DO NOT CUT THROUGH ERECIED STEEL PLATES, BOLTS, ANGLES OR SHAPES WITHOUT PROVISION OF THE ARCHITECT. AFTER CUTTING OR BORING, ALL SLAG AND ROUCH EDGES SHALL BE MICHANICALLY REMOVED TO PROVIDE A SMOOTH (1/32 INCH MIN.) BRIGHT METAL. ALL HIGH STRENCTH BOLTS SHALL BE SINUG TIGHT ONLY UNLESS OTHERWISEN OFTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS DESIGNED AS SLIP CONTACL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL LEWENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE DRILLED TO PROPER SIZE TO ACCOMMODATE DIAMETER OF ANCHOR SLEEVE. UNBONDED BRACES SHALL BE AS MANUFACTURED BY INFPON STEEL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, ASS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SEPCIEL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLDIONIC: PUINC CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE MENDRICING STEEL STRUCTU	STEEL MATERIALS SHALL CONFORM TO THE F WIDE FLANGE SHAPES A PLATES A AND ANGLES A TUBES A BASE PLATES A ANCHOR BOLTS A ANCHOR BOLTS (M.B.) A HIGH STRENGTH BOLTS (H.S.B.) A WELDED STUDOS A	OLLOWING: STM A992, GRADE 50 STM A572, GRADE 50 STM A500, GRADE B STM A53, GRADE B STM A53, GRADE B STM A53, ASTM A572, GRADE 50 STM A307 OR A36 STM A325-SC, N, X STM A108
CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FOR REVIEW PRIOR TO FABRICATION. FABRICATE FROM APPROVED SHOP DRAWINGS ONLY. WELDING SHALL ONLY BE DONE BY CERTIFIED WELDERS. ALL WELDING SHALL CONFORM TO AWS SPECIFICATIONS. PROVIDE TEMPORARY BACK-UP PLATES OR WELDS AT ALL COMPLETE PENETRATION (CP) WELD LOCATIONS; REMOVE PLATES ATTER CP WELDING AND GRIND AREA SMOOTH WHERE EXPOSED. IN GENERAL, NO ATTEMPT HAS BEEN MADE TO DIFFERENTIATE BETWEEN SHOP AND FIELD WELDING OPERATIONS. WHERE FIELD WELDING IS SPECIFICALLY NOTED, THE DESIGNATION IS GVEN AS A SUGGESTED CONSTRUCTION PROCEDURE ONLY. TRADE CONTRACTOR SHALL DETERMINE SUITABILITY OF SHOP OR FIELD WELDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING SHALL BE INSPECTED BY AN APPROVED TESTING MADRATORY. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17, 1998 EGC, APPLY TO ALL WELDING. DO NOT CUT THROUGH ERECTED STEEL PLATES, BOLTS, ANGLES OR SHAPES MUTHOUT PENNESSION OF THE ARCHIECT. ATTER CUTING OR BORING, ALL SLG AND ROUGH EDGES SHALL BE MECHANICALLY REMOVED TO PROVIDE A SMOOTH EDGE. ALL SURFACES CUT BY THERMAL PROCESSES SHALL BE GROUND (1/32 INCH MIN.) BRIGHT METAL. ALL HIGH STRENCTH BOLTS SHALL BE SANG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS DESIGNED AS SLIP ORTIFICAL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE ORDERS SHALL BE AS MANUFACTURED BY INPON STEEL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, ASS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PLING CAST-IN-PLACE CONCRETE CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL (AESS). IN GENERAL, ASS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PLING CAST-IN-PLACE ANCHOR BOLTS R	ALL STRUCTURAL STEEL SHALL CONFORM TO FABRICATION, ERECTION OF STRUCTURAL STEE	AISC SPECIFICATIONS FOR THE DESIGN, EL FOR BUILDINGS.
WELDING SHALL ONLY BE DONE BY CERTIFED WELDERS. ALL WELDING SHALL CONFORM TO AWS SPECIFICATIONS. PROVIDE TEMPORARY BACK-UP PLATES OR WELDS AT ALL COMPLETE PENETRATION (CP) WELD LOCATIONS: REMOVE PLATES AFTER CP WELDING AND GRIND AREA SMOOTH WHERE EXPOSED. IN GENERAL, NO ATTEMPT HAS BEEN MADE TO DIFFERENTIATE BETWEEN SHOP AND FIELD WELDING OPERATIONS. WHERE FIELD WELDING IS SPECIFICALLY NOTED. THE DESIGNATION IS GIVEN AS A SUGGESTED CONSTRUCTION PROCEDURE ONLY. TRADE CONTRACTOR SHALL DETERMINE SUITABILITY OF SHOP OR FIELD WELDING FOR ALL COMDITIONS. ALL SHOP AND FIELD WELDING SHALL BE INSPECTED BY AN APPROVED TESTING LABORATORY. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17, 1998 CBC, APPLY TO ALL WELDING. DO NOT CUT THROUGH ERECTED STEEL PLATES, BOLTS, ANGLES OR SHAPES WITHOUT PERMISSION OF THE ARCHITECT. AFTER CUTTING OR BORING, ALL SLAG AND ROUGH EDGES SHALL BE MECHANCALLY REMOVED TO PROVDE A SMOOTH EDGE. ALL SURFACES CUT BY THERMAL PROCESSES SHALL BE GROUND (1/32 INCH MIN.) BRIGHT METAL. ALL HIGH STRENGTH BOLTS SHALL BE SNUG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRAMINGS. ALL BOLTED CONNECTIONS DESIGNED AS SUP CRITICAL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE ORILLED TO PROPER SIZE TO ACCOMMODATE DIAMETER OF ANCHOR SLEEVE. UNBONDED BRACES SHALL BE AS MANUFACTURED BY INPON STEEL. SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, AESS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS.	CONTRACTOR SHALL SUBMIT SHOP DRAWINGS FABRICATE FROM APPROVED SHOP DRAWINGS	FOR REVIEW PRIOR TO FABRICATION. ONLY.
IN GENERAL, NO ATTEMPT HAS BEEN MADE TO DIFFERENTIATE BETWEEN SHOP AND FIELD WELDING OPERATIONS. WHERE FIELD WELDING IS SPECIFICALLY NOTED, THE DESIGNATION IS GIVEN AS A SUGGESTED CONSTRUCTION PROCEDURE ONLY. TRADE CONTRACTOR SHALL DETERMINE SUITABILITY OF SHOP OR FIELD WELDING FOR ALL CONDITIONS. ALL SHOP AND FIELD WELDING SHALL BE INSPECTED BY AN APPROVED TESTING LABORATORY. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17, 1998 CBC, APPLY TO ALL WELDING. DO NOT CUT THROUGH ERECTED STEEL PLATES, BOLTS, ANGLES OR SHAPES WITHOUT PERMISSION OF THE ARCHITECT. AFTER CUTING OR BORING, ALL SLAG AND ROUCH EDGES SHALL BE MCHANICALLY REMOVED TO PROVIDE A SMOOTH (1/32 INCH MIN.) BRIGHT METAL. ALL HIGH STRENCTH BOLTS SHALL BE SNUG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRIVINGS. ALL BOLTED CONNECTIONS DESIGNED AS SLIP ORTICAL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE FRUCTURAL USES SHALL BE AS MANUFACTURED BY NIPPON STEEL. SEE SPECIFICATION. SERUCTURAL STRELEMENTS FOR CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE FRUCTURAL STREL (ASSS). IN GENERAL, ASS IS NOT DESIGNATED ON THE STRUCTURAL STRUCTURAL STEEL (ASSS). IN GENERAL, ASS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (ASSS). IN GENERAL, ASS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLDING: PUING CONCRETE GANCHOR BOLTS REIMED TO THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS FOR CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLDING: PUING CONCRETE MASONRY UNITS STRUCTURAL STEEL MASONRY UNITS STRUCTURAL STEEL MASONRY UNITS SFE SPECIFICIATION SEE ADDITIONAL BOLTING EPOYL DOMEL BARGES RADITIONAL BOLTING EPOYL DOMEL BARS	WELDING SHALL ONLY BE DONE BY CERTIFIED CONFORM TO AWS SPECIFICATIONS. PROVIDE WELDS AT ALL COMPLETE PENETRATION (CP) AFTER CP WELDING AND GRIND AREA SMOOTH	D WELDERS. ALL WELDING SHALL TEMPORARY BACK-UP PLATES OR WELD LOCATIONS; REMOVE PLATES H WHERE EXPOSED.
ALL SHOP AND FIELD WELDING SHALL BE INSPECTED BY AN APPROVED TESTING LABORATORY. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17, 1998 CBC, APPLY TO ALL WELDING. DO NOT CUT THROUGH ERECTED STEEL PLATES, BOLTS, ANGLES OR SHAPES WITHOUT PERMISSION OF THE ARCHITECT. ATTER CUTTING OR BORING, ALL SLAG AND ROUGH EDGES SHALL BE MECHANICALLY REMOVED TO PROVIDE a SMOOTH EDGE. ALL SURFACES CUT BY THERMAL PROCESSES SHALL BE GROUND (1/32 INCH MIN.) BRIGHT METAL. ALL HIGH STRENGTH BOLTS SHALL BE SNUG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS DESIGNED AS SLIP CRITICAL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHEN IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE DRILLED TO PROPER SIZE TO ACCOMMODATE DIAMETER OF ANCHOR SLEEVE. UNBONDED BRACES SHALL BE AS MANUFACTURED BY INIPON STELL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STELL (ASSS). IN GENERAL, AESS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CASTOR CONTROL STRUCTURAL STELL (ASS). IN GENERAL, STEEL CASS SHALL BE STRUCTURAL STEEL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CASTOR SHALL BE FOLLOWING: PILING CONCRETE WELDING AND BOLTING EPOYL DOWLE BARS UNBONDED BRACES READITION AND BOLTING EPOYL DOWLE BARS UNBONDED BRACES RADITIONAL REQUIREMENTS FOR ACHITECTURAL DRAWINGS. SFELFORCION REQUIREMENTS FOR ADDITIONE EPOYL DOWLE BARS UNBONDED BRACES READITION AND BOLTING EPOYL DOWLE BARS	IN GENERAL, NO ATTEMPT HAS BEEN MADE T WELDING OPERATIONS. WHERE FIELD WELDIN IS GIVEN AS A SUGGESTED CONSTRUCTION P DETERMINE SUITABILITY OF SHOP OR FIELD W	TO DIFFERENTIATE BETWEEN SHOP AND FIELD IG IS SPECIFICALLY NOTED, THE DESIGNATION ROCEDURE ONLY. TRADE CONTRACTOR SHALL VELDING FOR ALL CONDITIONS.
DO NOT CUT THROUGH ERECTED STEEL PLATES, BOLTS, ANGLES OR SHAPES WITHOUT PERMISSION OF THE ARCHITECT. ATTER CUTTING OR BORING, ALL SLAG AND ROUGH EDGES SHALL BE MECHANICALLY REMOVED TO PROVIDE A SMOOTH EDGE. ALL SURFACES CUT BY THERMAL PROCESSES SHALL BE GROUND (1/32 INCH MIN) BRIGHT METAL ALL HIGH STRENGTH BOLTS SHALL BE SNUG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS DESIGNED AS SUP CRITICAL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE ORILLED TO PROPER SIZE TO ACCOMMODATE DIAMETER OF ANCHOR SLEEVE. UNBONDED BRACES SHALL BE AS MANUFACTURED BY INIPON STEEL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, AESS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWE STEEL AND BOLTS STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWE BARCES REINFORCED CONCRETE MASONRY UNITS SFE SPECIFICIATIONS FOR ADDITIONAL REQUIREMENTS FOR SFE SPECIFICIATIONS FOR ADDITIONAL REQUIREMENTS	ALL SHOP AND FIELD WELDING SHALL BE INS LABORATORY. SPECIAL INSPECTION REQUIREM APPLY TO ALL WELDING.	SPECTED BY AN APPROVED TESTING MENTS OF CHAPTER 17, 1998 CBC,
ALL HIGH STRENGTH BOLTS SHALL BE SNUG TIGHT ONLY UNLESS OTHERWISE NOTED ON THE DRAWINGS. ALL BOLTED CONNECTIONS DESIGNED AS SUP CRITICAL SHALL BE FULLY TENSIONED AND EQUIPPED WITH A DIRECT TENSION INDICATOR WASHER IN ACCORDANCE WITH THE SPECIFICATION. STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE DRILLED TO PROPER SIZE TO ACCOMMODATE DIAMETER OF ANCHOR SLEEVE. UNBONDED BRACES SHALL BE AS MANUFACTURED BY INIPPON STEEL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, AESS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWE BEARS UNBONDED BRACES REINFORCED CONCRETE MASONRY UNITS SFE SPECIFICIATIONS ERR ADDITIONAL REQUIREMENTS	DO NOT CUT THROUGH ERECTED STEEL PLAT WITHOUT PERMISSION OF THE ARCHITECT. AJ AND ROUGH EDGES SHALL BE MECHANICALLY EDGE. ALL SURFACES CUT BY THERMAL PRO (1/32 INCH MIN.) BRIGHT METAL.	ES, BOLTS, ANGLES OR SHAPES FTER CUITING OR BORING, ALL SLAG REMOVED TO PROVIDE A SMOOTH DCESSES SHALL BE GROUND
STRUCTURAL ELEMENTS FASTENED TO CONCRETE BY DRILLED SLEEVE ANCHORS SHALL BE ORILLED TO PROPER SIZE TO ACCOMMODATE DIAMETER OF ANCHOR SLEEVE. UNBONDED BRACES SHALL BE AS MANUFACTURED BY NIPPON STEEL. SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, AESS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE ACHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWEL BARS UNBONDED BRACES REINFORCED CONCRETE MASONRY UNITS SEF SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS OF	ALL HIGH STRENGTH BOLTS SHALL BE SNUG ON THE DRAWINGS. ALL BOLTED CONNECTIO FULLY TENSIONED AND EQUIPPED WITH A DIR ACCORDANCE WITH THE SPECIFICATION.	TIGHT ONLY UNLESS OTHERWISE NOTED NS DESIGNED AS SLIP CRITICAL SHALL BE RECT TENSION INDICATOR WASHER IN
UNBONDED BRACES SHALL BE AS MANUFACTURED BY NIPPON STEEL SEE SPECIFICATION. SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (ASS). IN GENERAL, ASSS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTON REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWE BARS UNBONDED BRACES REINFORCED CONCRETE CAST-CONCRETE CASONRY UNITS SFE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS	STRUCTURAL ELEMENTS FASTENED TO CONCRISHALL BE DRILLED TO PROPER SIZE TO ACC	ETE BY DRILLED SLEEVE ANCHORS OMMODATE DIAMETER OF ANCHOR SLEEVE.
SEE SPECIFICATION FOR SPECIAL REQUIREMENTS FOR ARCHITECTURALLY EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, AESS IS NOT DESIGNATED ON THE STRUCTURAL DRAWINGS. SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE CAST-IN-PLACE	UNBONDED BRACES SHALL BE AS MANUFACT	URED BY NIPPON STEEL. SEE SPECIFICATION.
SPECIAL INSPECTION THE SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE CAST-IN-PLACE CONCRETE STRUCTURAL STEEL BENOTO DOWNED BRACES REINFORCED CONCRETE MASONRY UNITS SFE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS	SEE SPECIFICATION FOR SPECIAL REQUIREMENT EXPOSED STRUCTURAL STEEL (AESS). IN GENERAL, AESS IS NOT DESIGNATED ON T	NTS FOR ARCHITECTURALLY HE STRUCTURAL DRAWINGS.
THE SPECIAL INSPECTION REQUIREMENTS OF CHAPTER 17 OF THE 1998 CBC APPLY TO THE FOLLOWING: PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWEL BARS UNBONDED BRACES REINFORCED CONCRETE MASONRY UNITS SFE SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS	SPECIAL INSPECTION	
PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWEL BARS UNBONDED BRACES REINFORCED CONCRETE MASONRY UNITS SEF SPECIFICATIONS FOR ADDITIONAL REQUIREMENTS	THE SPECIAL INSPECTION REQUIREMENTS OF APPLY TO THE FOLLOWING:	CHAPTER 17 OF THE 1998 CBC
REINFORCED CONCRETE MASONRY UNITS	PILING CAST-IN-PLACE CONCRETE CAST-IN-PLACE ANCHOR BOLTS REINFORCING STEEL STRUCTURAL STEEL WELDING AND BOLTING EPOXY DOWEL BARS UNRONNET BRACES	
SEE SPECIFICATIONS FOR ADDITIONAL REDUIREMENTS	REINFORCED CONCRETE MASONRY UNITS	
	SEE SPECIFICATIONS FOR ADDITIONAL REQUIRE	EMENIS

Design Basis and Steel Notes from Sheet S0.01 Dated June 2002 Showing Design Per 1998 CBC/1997 UBC, V=0.14W, I=1.0, R=6.4, Unbonded Braces Supplied by Nippon Steel Corporation

South Elevation of Rutter Center, Garage at Left

Architectural Sections Looking North (top view), Looking West (bottom view).

Architectural Sections Looking West (top view) and Looking South (bottom view)

RUTHERFORD + CHEKENE ruthchek.com

Architectural Second Floor Plan showing Auditorium with Stage, Atrium with Bridge, Locker Rooms, Mechanical Rooms, and Swimming Pool

First Floor and Foundation Plan Sheet S2.01 with N-S BRBs (pink) and E-W BRBs (green). North is to the right in all plans.

RUTHERFORD + CHEKENE

Second Floor Framing Plan Sheet S2.02 (Indoor pool at upper left)

Third Floor Framing Plan Sheet S2.04 Showing BRB Frames, including Many that do not Engage Third Floor Framing

RUTHERFORD + CHEKENE

Fourth Floor Framing Plan Sheet S2.05 (west side of floor is outdoor deck and pool)

RUTHERFORD + CHEKENE

Low Roof Framing Plan Sheet S2.06

High Roof Framing Plan Sheet S2.07 (Tower at north east corner extends above this level)

Transverse (E-W) BRB Frames. Thirteen braced bays at first floor. "Maximum Yield Force" from 150 kips to 450 kips from Sheet S3.01. Discontinuous braces at Line 3.

Transverse (E-W) BRB Frames. Thirteen braced bays at first floor. "Maximum Yield Force" from 150 kips to 450 kips from Sheet S3.01. Discontinuous braces at Line 3 (continuation).

Longitudinal (N-S) BRB Frames. Ten braced bays at first floor. "Maximum Yield Force" from 150 kips to 450 kips from S3.02. Discontinuous Braces on Gridline J.

Longitudinal (N-S) BRB Frames. Ten braced bays at first floor. "Maximum Yield Force" from 150 kips to 450 kips from S3.02. Discontinuous braces on Gridline J (continuation).

Framing for Tower at Northeast Corner of Building

COLUMN MARK	SC1/C1	C2	SC3/C3	SC4		
COLUMN LOCATION	D-7, D-11 J-7, J-11	8-9, 8-8.5 C-9, C-8.5	D-8, D-9, D-10 E-11 F-7, F-11 G-7, G-11, G.8-7 G.8-11 J-8, J-9, J-10	A-9, 10 E-2, E-3		
	91.4	32	91.4	46.7		
TOWER ROOF						
UPPER ROOF						
LOWER ROOF				WHERE OCCURS SEE PLANS		
FOURTH ELOOP	W14x511	W14x90 (A.A. #7)	W14x176	M14x99		
FOORIH FLOOR	-					
	#14x311	W14x90	M14x311	#14x132		
THIRD FLOOR						
SECOND FLOOR				TYP. @ SC COLS TYP. @ C COLS		
	W14x311	W14x109	W14x311	W14x159		
FIRST FLOOR	AT C TVD					
	TAT SC TYP		1			
BASE DETAIL (SEE SCHEDULE)	BP1	BP3	BP1	BP1		

NOTE: SEE PLANS FOR TOP OF STEEL ELEVATION.

Column Schedule Sheet S7.05. All circled columns are in BRB Frames. Columns with red highlighting do not comply with compact section criteria in AISC 341-05.

	0.05	00	007/07	
	G-11	C6	A-1, 02, A-1	B-5
COLUMN LOCATION	D-6 E-4 F-2, F-4 G-2, G-3, G-4	D-2, D-3, D-4, D-5 F-3 J-4	E-8, E-8.7, E-10 G.8-8, G.8-9, G.8-10	
	38.8	26.5	91.4	56.8
TOWER ROOF				
UPPER ROOF				
LOWER ROOF	WHERE OCCURS SEE PLANS	WHERE OCCURS SEE PLANS		
Fourth Floor	W14c120	0014 SPLICE NOT ALL AT J-4	UWED	
THIRD FLOOR	W14x120	SPLEE SPLEA	W14x311	#14X159
SECOND FLOOR	_	W14x159	-	_
FIRST FLOOR	W14x132	W14x90	W14x311	501X41W
		↓_⊥	+	
BASE DETAIL (SEE SCHEDULE)	8P1	BP5	BP1	BP6

NOTE: SEE PLANS FOR

Column Schedule Sheet S7.05. All circled columns are in BRB Frames. Columns with red highlighting do not comply with compact section criteria in AISC 341-05 (continuation).

COLUMN MARK	SC9/C9	C10	C11	C11 C12		
COLUMN LOCATION	A-5 A-6, A-8 B-1, B-3, B-6, B-8 C-1, C-3, C-5, C-6 F-1 G-1	A-4, A-7 B-7, B-10.2 C-4, C-7 C-8, C-10.2 D-1 E-1 H-2, H-3, H-4 J-3	A5-11 B-2.3, C-2, C-2.3 F.6-5.1, F.6-5.5 F-8, F-9 G.4-5.1, G.4-6 G-8, G-9	B-11	G-4.2 G-5 G-5.6 G-6.2 G-6.8	
TOWER ROOF	46.7	26.5	32			
TOWER ROOF						
		, *				
UPPER ROOF						
LOWER ROOF						
Fourth Floor		W14x90 (A.A. #7)				
Third Floor	W14x145	W14x90			T514x10x1/2	
SECOND FLOOR		_		W14x90		
FIRST FLOOR	W14x159	W14x90	W14x109		AT G-5 AND G-4.2	
	±	L L	T		1	
BASE DETAIL (SEE SCHEDULE)	BP2	BP3	BP4	-	(15) 	

NOTE: SEE PLANS FOR

Column Schedule Sheet S7.05. All circled columns are in BRB Frames. Columns with red highlighting do not comply with compact section criteria in AISC 341-05 (continuation).

Column Schedule Sheet S7.05. All Circled Columns are in BRB Frames. Columns with Red Highlighting Do Not Comply with Compact Section Criteria in AISC 341-05 (continuation).

Brace Details Sheet S7.05

Brace Details Sheet S7.05 (continuation)

Brace Details Sheet S7.05 (continuation)

	BRACED FRAME CONNECTION SCHEDULE							
MINIMUM BRACE YIELD	MAXIMUM BRACE YIELD	BRACE SPLICE P TO GUSSET P	MININUM	SPLICE R's	TO BEAM	WELD OF GUSSET R TO BEAM OR COLUMN (PER BRACE)		
FORCE (SEE ELEVS.)	FORCE	TOTAL # OF BOLTS (1)	STIFFNESS (2) Ki L (K in/in)	THICKNESS (in.)	SIZE	MINIMUM LENGTH BEAM	MINIMUM LENGTH COLUMN	
100k	115k	12	89,610	3/8"	3/8"	6"	12*	
150k	173k	12	134,270	3/8"	3/8"	14"	16"	
200k	230k	16	178,930	3/8"	3/8"	20"	24"	
250k	288k	16	223,880	3/8"	3/8"	24"	30*	
300k	345k	20	268,540	1/2	1/2"	16*	22*	
350k	403k	20	313,200	1/2"	1/2"	26*	28"	
400k	460k	24	356,700	1/2	1/2*	28*	28"	
450k	518k	24	403,100	1/2"	1/2"	30"	32"	

 BOLTS ARE A325-SC 1*9 BOLTS IN SHORT SLOTTED HOLES (PARALLEL TO LENGTH OF BRACE) NUMBER OF BOLTS LISTED IS FOR EACH SIDE OF SPLICE. USE EQUAL NUMBER FOR BRACE TO BRACE SPLICE PLATES. (24 BOLT CONDITION SHOWN)

2. THE MINIMUM INITIAL BRACE STIFFNESS APPLIES TO ENTIRE BRACE ASSEMBLY (L) FROM EDGE OF GUSSET TO EDGE OF GUSSET.

3. THE PORTION OF THE BRACE ASSEMBLY FROM THE WORK POINT TO THE EDGE OF THE GUSSET PLATE SHALL BE ASSUMED AS RIGID FOR THE PURPOSES OF CALCULATING INITIAL STIFFNESS.

SCHEDULE

NO SCALE

BRB Connection Schedule from Sheet S7.06

RUTHERFORD + CHEKENE ruthchek.com

Nippon Submittal for BRB Sizes 150k to 450k Using HSS10x10, HSS12x12 and HSS14x14 Sections Excerpts from Nippon Submittals in following pages – Design Calculations by Ian Aiken submitted Feb 2003

the state of the s	wheel were and a support of the support	NATURAL CONTRACTOR OF STREET, S	1000 1000 Min. 51 PE CORAM		57777 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977				
	Member Mark	Location and Quantity(pcs)						(AS	STN
		Line	Grid	Level	Type of UBB	Total		Dia (in)	
	UBB-1	1	B-C	1	200ka	1		1	
	UBB-2	1	F-G	3	150k	1		1	
Conception of the	UBB-3	1	F-G	3	150k	1		1	
a second second	UBB-4	1	F-G	2	250k	- 1		1	
AND DOUGH	UBB-5	1	F-G	2	250k	1		1	Ī
(Antenisco)	UBB-6	1	F-G	1	250ka	1	_	1	Γ
- Company	UBB-7	1	F-G	1	250ka	1		1	Γ
Contra Dictoria	UBB-8	1	G-H	3	150k	1		1	
	UBB-9	1	G-H	3	150k	1		1	Γ
	UBB-10	1	G-H	2	250k	1	L	1	Ī
	UBB-11	1	G-H	2	250k	1	_	1	Γ
	UBB-12	1	G-H	1	250ka	1	Ľ	1	Γ
	UBB-13	1	G-H	1	250ka	1		1	Γ
	UBB-14	2	F-G	4	200ka	1		1	T
	UBB-15	2	F-G	4	200ka	1		1	T
14	UBB-16	2	F-G	3	_ 200k	. 1		1	Γ
	UBB-17	2	F-G	3	200k	1		1	T
	UBB-18	3	B-C	1	200ka	1		1	Γ
	UBB-19	4	E-F	4	150k	2		1	ſ
	UBB-20	4	E-F	3	150k	Ź	ľ	1	T
	UBB-21	4	E-F	2	200k	2		1	T
	UBB-22	4	E-F	1	200k	2		1	T

Bolt			
(ASTM A325: Out of Scope)			
Dia	N1	N2	Total
(in)	(pcs)	(pcs)	(pcs)
1	4	4	64
1	3	3	48
1	3	3	48
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	3	3	48
1	3	3	48
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	4	4	64
1	3	3	48
1	3	3	48
1	4	4	64
1	4	4	64

Member Mark, Location and Quantity

Joint Type, Bolt

Enlarged Detail of Nippon Steel Shop Drawing Submittal Page 1 of 1 for UBB-1 to UBB-22. Shows number of bolts at Gridlines 1 through 4 with no comments in the original drawing set.

Mission Bay Building 21B University of California, San Francisco

Design Calculations for Unbonded Braces

Project: UCSF Mission Bay Campus Community Center Building 21B

Introduction

This document presents design calculations for the Unbonded Braces, in accordance with the requirements of Specification section 13085.1.04.E.

The calculations address:

- Global brace buckling the properties of the confinement tube.
- Welding the connection of the rib plates to the ends of the core plate, in the cruciform end connection
 region.
- Bolts shear capacity.
- End cruciform net tension capacity.

Calculations are provided below for **Unbonded Brace design UBB-1** (UBB Mark 200ka). A complete set of calculations for all Unbonded Braces are presented in the attached spreadsheets.

Feb. 6, 2003

UCSF Mission Bay Campus Community Center Building 21B

	Brace	Locatio	on and Quar	tity		Т	Desig	n Require	ments	Nº1	anti C	IVIL	1	/		2.0	ore Plate ((BOOM/2							3.0	Inel Tube	US STVP.	400)		
	0.000	20100				+	Min.	Max.	Min.		Enga		C P	-		2.0	Sectional	Actual		End					3, 2	NOBI TUDE	213 311070	400) Buc	aling	
UBB		Grid		Floo	r		Yield	Yield	Initial	Intega	a wat	CALIT	mic	kness	w	idth	Area	Yield	Mill	width	Actua	I Yield	Height	Width	Thk.	Moment	of Inertia	Stre	nath	
Mark	ID	Line	Grid	Leve	N Qh	۷L	Load	Load	Stiffness	L	wp	Type		t	1	W	A2	Point, Fy	Certificate	Wit	Ford	10, Py	н	В	t	Ix,	ly .	F	10	Pe/Py
							(kips)	(kips)	(k in/in)	(in)	(mm)	(+/-)	(mm)	(in)	(mm)	(in)	(cm2)	(MPa)	Plate #	(mm)	(kN)	(kips)	(mm)	(mm)	(mm)	(cm4)	(in*)	(kN)	(kips)	
					_	٦Г							_	Contraction of the local division of the loc	-															
200ka	U88-1	1	B-C	1	1	T	200	230	178,930	457.12	11.611		25	0.98425	127	5.000	31.75	313	1477821	280	004	223	300	300	6	10 169	244 314	1.540	345	1.55
150k	UBB-2	1	F-G L	3	1	T	150	173	134,270	255.21	6.482		19	0.74803	126	4 961	23.94	286	951800501	280	685	153	250	250	6	5.814	130 687	2 825	633	4.13
150k	UBB-3	1	F-G R	3	1	Ŧ	150	173	134,270	255.21	6.482		10	0.74803	126	4.061	23.04	200	951800501	200	605	163	250	260	6	5.914	130.007	2,020	633	4.10
250k	UBB-4	1	F-G L	2	1	Ŧ	250	288	223,880	255 21	6.482		25	0.98425	150	6 260	30.75	317	1480731	200	1 360	282	250	250	6	5,014	130.007	2,025	633	2.24
250k	UBB-5	1	F-G R	2	1	t	250	288	223,880	255.21	6.482		25	0.08425	160	6 260	30.75	317	1480731	200	1,200	202	250	250	0	5,014	139.007	2,020	633	2.24
250ka	UBB-6	1	F-G R	1	1	t	250	288	223,880	317.61	8.067		25	0.08425	150	6 260	30.75	31/	1408903	200	1,200	202	200	200	0	14 700	355 559	4,020	1.040	2.24
250ka	UBB-7	1	F-G L	1	1	t	250	288	223 880	317.61	8.067		25	0.08425	150	6.260	30.75	314	1408802	200	1,240	280	300	300		14,789	355.556	4,042	1,040	3.72
150k	UBB-8	1	GH L	3	1	t	150	173	134 270	253.71	6,001	-	10	0.74803	100	4 061	22.04	200	06190052	200	1,240	200	300	300		5.014	300.000	9,042	840	3.12
150k	UBB-9	1	G-H R	3	1	÷	150	173	134 270	253.71	6.444		10	0.74803	120	4,301	23.94	200	951800501	200	000	103	200	200	0	0,014	139.007	2,838	640	9.17
250k	UBB-10	1	GH I	2	1	÷	250	288	223 880	253.71	6.444		26	0.09405	120	4.301	20.75	200	951800501	200	000	103	200	250	0	5,014	139.007	2,000	640	9.17
250k	UBB-11	1	GH P	2	1	÷	250	288	223,880	253.71	6.444		20	0.98425	109	6.260	39.75	314	1498891	280	1,248	280	250	250	0	5,814	139.687	2,858	640	2.29
2504.0	100.12	4	GH I	-	1	÷	250	200	223,000	200.71	9,037	· ·	20	0.90425	159	6.200	39.75	314	1495891	280	1,248	280	250	250	0	5,814	139.687	2,858	640	2.29
2504a	UBB.13		CH P		+ + +	÷	250	200	223,000	310,40	8,037	· ·	20	0.95425	159	6.260	39.75	314	1498892	280	1,248	280	300	300	9	14,799	355.558	4,678	1,048	3.75
20040	1100 44	2	EC B		1	÷	200	200	470.000	310,40	0,037		20	0.98425	159	6.260	39.75	314	1498892	280	1,248	280	300	300	9	14,799	355.558	4,678	1,048	3.75
20068	1000-14	2	FOR	-	+ :	÷	200	230	178,930	301.25	9,176	· ·	20	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	300	300	6	10,169	244.314	2,466	552	2.45
200%	UBB-15	-	F-0 L		+ :	÷	200	230	178,930	361.25	9,176	· ·	25	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	300	300	6	10,169	244.314	2,466	552	2.45
200K	UBB-16	2	FGL	3	+ !	+	200	230	178,930	255.12	6,480	· ·	25	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	250	250	6	5,814	139.687	2,827	633	2.81
200K	UBD-17	2	P-G R	3	1	÷	200	230	178,930	255.12	6,480	· ·	25	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	250	250	6	5,814	139.687	2,827	633	2.81
1504	UBB-10	3	8-6	1	+ +	÷	200	230	178,930	458.20	11,640	· ·	25	0.98425	127	5.000	31.75	313	1477821	280	994	223	300	300	6	10,169	244.314	1,532	343	1.54
150K	UBB-19	4	E-P	4	2	÷	150	1/3	134,270	338.19	8,590	· ·	19	0.74803	126	4.961	23.94	286	951800501	280	685	153	250	250	6	5,814	139.687	1,609	360	2.35
150K	UBB-20	4	E-P	3	2	÷	150	1/3	134,270	221.35	5,622	· ·	19	0.74803	126	4.961	23.94	286	951800501	280	685	153	250	250	6	5,814	139.687	3,755	841	5.48
200K	UBB-21	4	E-P	2	2	÷	200	230	178,930	221.27	5,620		25	0.98425	127	5.000	31.75	314	1498891	280	997	223	250	250	6	5,814	139.687	3,758	842	3.77
200K	UBB-22	4	E-P	1	2	÷	200	230	178,930	291,43	7,402		25	0.98425	127	5.000	31.75	314	1498891	280	997	223	250	250	6	5,814	139.687	2,166	485	2.17
200k	UBB-23	5	A-B R	2	1	+	200	230	178,930	312.26	7,931	· ·	25	0.98425	127	5.000	31.75	295	1477941	280	937	210	250	250	6	5,814	139.687	1,887	423	2.01
200K	UBB-24	b	A-8 L	2	1	÷	200	230	178,930	312.26	7,931		25	0.98425	127	5.000	31.75	295	1477941	280	937	210	250	250	6	5,814	139.687	1,887	423	2.01
300k	UBB-25	5	A-B R	1	1	+	300	345	268,540	317.61	8,067	· ·	25	0.98425	191	7.520	47.75	314	1498892	280	1,499	336	300	300	6	10,169	244.314	3,190	715	2.13
300k	UBB-26	5	A-B L	1	1	+	300	345	268,540	317.61	8,067	•	25	0.98425	191	7.520	47.75	314	1498892	280	1,499	336	300	300	6	10,169	244.314	3,190	715	2.13
200k	UBB-27	5	B-C L	2	1	÷	200	-230	178,930	312.26	7,931	· ·	25	0.98425	127	5.000	31.75	295	1477941	280	937	210	250	250	6	5,814	139.687	1,887	423	2.01
200k	UBB-28	5	B-C R	2	1.1.	÷ł÷	200	230	178,930	312.26	7,931	•	25	0.98425	127	5.000	31.75	295	1477941	280	937	210	250	250	6	5,814	139.687	1,887	423	2.01
300k	UBB-29	5	B-C L	1	-1	46	300	345	268,540	317.61	8,067		25	0.98425	191	7.520	47.75	314	1498892	280	1,499	336	300	300	6	10,169	244.314	3,190	715	2.13
300k	UBB-30	5	B-C R	<u>_1</u>	2.21	4	300	345	268,540	317.61	8,067	•	25	0.98425	191	7.520	47.75	314	1498892	280	1,499	336	300	300	6	10,169	244.314	3,190	715	2.13
200kb	UBB-31	7	F-G	-4	1	4	200	230	178,930	484.38	12,303		25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	9	14,799	355.558	1,996	447	2.01
350ka	UBB-32	7	F-G	2	1.4	al:	350	403	313,200	487.00	12,370		25	0.98425	124	4.882	55.75	295	1477942	280	1,645	368	350	350	9	23,808	571.981	3,176	712	1.93
350ka	UBB-33	7	F-G	-1	1 -1	4	350	403	313,200	459.85	11,680	+	25	0.98425	124	4.882	55.75	295	1477942	280	1,645	368	350	350	9	23,808	571.981	3,562	798	2.17
200ka	UBB-34	7	G-G.8	-4	1	9	200	230	178,930	447.28	11,361	•	25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	6	10,169	244.314	1,608	360	1.62
350ka	UBB-35	7	G-G.8	2	11	4	-350	403	313,200	466.95	11,860	+	25	0.98425	124	4.882	55.75	295	1477942	280	1,645	368	350	350	9	23,808	571.981	3,455	774	2.10
350ka	UBB-36	-7	G-G.8	-1	11		_350	403	313,200	420.60	10,683	+	25	0.98425	124	4.882	55.75	282	1274581	280	1,572	352	350	350	9	23,808	571.981	4,258	954	2.71
200ka	UBB-37	- 8	A-B	- 2	-2	4	200	230	178,930	381.44	9,689	•	25	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	300	300	6	10,169	244.314	2,211	495	2.20
300k	UBB-38	6	A-B	1	2	4	300	-345	268,540	317.90	8,075	•	25	0.98425	191	7.520	47.75	314	1498891	280	1,499	336	300	300	6	10,169	244.314	3,184	713	2.12
350ka	UBB-39	11	C-D_R	2	0. 1	4	350	403	313,200	376.71	9,568	•	25	0.98425	124	4.882	55.75	282	1274582	280	1,572	352	350	350	9	23,808	571.981	5,308	1,189	3.38
350ka	UBB-40	11	C-D L	2	1	4	350	403	313,200	376.71	9,568	+	25	0.98425	124	4.882	55.75	282	1274582	280	1,572	352	350	350	9	23,808	571.981	5,308	1,189	3.38
400k	UBB-41	11	C-D R	- (T)	1	+	400	460	356,700	317.32	8,060	+	25	0.98425	140	5.512	63.75	295	1477941	305	1,881	421	300	300	6	10,169	244.314	3,196	716	1.70
400k	UBB-42	11	C-D L	0.4	1		400	460	356,700	317.32	8,060	+	25	0.98425	140	5.512	63.75	295	1477941	305	1,881	421	300	300	6	10,169	244.314	3,196	716	1.70
300ka	UBB-43	11	D-E	4	1	+	-300	345	268,540	488.96	12,420		25	0.98425	191	7.520	47.75	313	1477821	280	1,495	335	350	350	9	23,808	571.981	3,151	706	2.11
400ka	UBB-44	111	D-E 5	2	1	4	400	460	356,700	411.69	10,457	+	25	0.98425	140	5.512	63.75	282	1274581	305	1,798	403	350	350	9	23,808	571.981	4,445	996	2.47
450k	UBB-45	11	D-E	1	1.1	1	450	518	403,100	358.25	9,100	+	25	0.98425	156	6.142	71.75	282	1274582	305	2,023	453	350	350	9	23,808	571.981	5,870	1,315	2.90
300ka	UBB-46	11	E-F	4	1 1	10	300	345	268,540	507.45	12,889		25	0.98425	191	7.520	47.75	313	1477821	280	1,495	335	350	350	9	23,808	571.981	2,925	655	1.96
400ka	UBB-47	11	E-F L	2	- 1.		400 >>	3460	356;700	433.50	11,011	+	25	0.98425	140	5.512	63.75	295	1477942	305	1,881	421	350	350	9	23,808	571.981	4,009	898	2.13
450k	UBB-48	11	E-F 🏱	21	DE		450	518	356,700	383.11	9,731	+	25	0.98425	156	6.142	71.75	282	1274582	305	2,023	453	350	350	9	23,808	571.981	5,133	1,150	2.54
200ka	UBB-49	A	2-3 R	2	1	F	200	230	178,930	385.69	9,796		25	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	300	300	6	10,169	244.314	2,163	485	2.15
200ka	UBB-50	A	2-3 E	2	-1		200	230	178,930	385,69	9,796		25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	6	10,169	244.314	2,163	485	2.18
250ka	UBB-51	A	2-3.) R ²	$\leq 1^{\circ}$	- 1		250	288	223,880	313,64	7,966		25	0.98425	159	6.260	39.75	314	1498892	280	1,248	280	300	300	9	14,799	355.558	4,761	1,066	3.81
250ka	UBB-52	A	2-3 L	-1.	51		250	288	223,880	313 64	7,966		25	0.98425	159	6.260	39.75	314	1498892	280	1,248	280	300	300	9	14,799	355.558	4,761	1,066	3.81
200ka	UB8-53	A	5-6R	2	121	4	200	230	178,930	381.05	9,679		25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	6	10,169	244.314	2,216	496	2.23
200ka	UBB-54	A-	5-6 L	2	012	1	200	230	178,930	381.05	9,679		25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	6	10,169	244.314	2,216	496	2.23
250ka	UB8-55	A.	5-6 R	-1	121		250	288	223,880	317.61	8,067		25	0.98425	159	6.260	39.75	314	1498892	280	1,248	280	300	300	9	14,799	355.558	4.642	1.040	3.72
250ka	UB8-56	À	5-6 L	1	1	Т	250	288	223,880	317.61	8,067		25	0.98425	159	6.260	39.75	314	1498891	280	1.248	280	300	300	9	14,799	355.558	4.642	1.040	3.72
			10 100 million 1	1.000		-	and the second se													2.00	1.00.10	200	000			1.1.1.00		1,0118	1 11W WW	

Page 1 / 2

RUTHERFORD + CHEKENE

ruthchek.com

Unbonded Brace Design Details

UCSF Mission Bay Campus Community Center Building 21B

Feb. 6, 2003

	Brace	e Locat	ion and Qua	intity		Desi	gn Require	ements	1. Lo	ength					2.0	Core Plate (SN400B)							3. 5	steel Tube	JIS STKR	400)		
U88 Mark	ID	Grid	Grid	Floo		Min. Yield	Max. Yield	Min. Initial Stiffness	Interst	ory WP	Type	Thic	ckness	w	idth W	Area	Actual Yield	Mill Certificate	End width	Actua Force	il Yield xe, Py	Height	Width	Thk.	Moment lx,	of Inertia ly	Stre	ding ngth	Pe / Py
						(kips)	(kips)	(k in/in)	(in)	(mm)	(+/-)	(mm)	(in)	(mm)	(in)	(cm ²)	(MPa)	Plate #	(mm)	(kN)	(kips)	(mm)	(mm)	(mm)	(cm ⁴)	(in ⁴)	(kN)	(kips)	1
				-	-																								
25088	1088-0	7 A	9-10	2	2	250	288	223,880	381.05	9,679	•	25	0.98425	159	6.260	39.75	317	1480731	280	1,260	282	300	300	9	14,799	355.558	3,225	722	2.56
200ka	UBB-5	P D	10-11 L	4	1	200	230	178 930	455.58	8,067		25	0.98425	191	7.520	47.75	314	1498892	280	1,499	336	300	300	6	10,169	244.314	3,190	715	2.13
200ka	UBB-6	0 D	10-11 R	4	1	200	230	178,930	455.58	11.572		25	0.00425	127	5.000	31.75	313	14//821	280	994	223	300	300	0	10,169	244.314	1,550	347	1.50
250ka	UBB-6	1 D	10-11 L	2	1	250	288	223,880	380.33	9.660		25	0.98425	159	6.260	39.75	314	1498891	280	1 248	280	300	300	9	14 799	355 558	3 237	726	2.59
250ka	UBB-6	2 D	10-11 R	2	1	250	288	223,880	380.33	9,660	•	25	0.98425	159	6.260	39.75	314	1498891	280	1,248	280	300	300	9	14,799	355.558	3.237	725	2.59
300k	UBB-6	3 D	10-11 L	1	1	300	345	268,540	317.61	8,067		25	0.98425	191	7.520	47.75	282	1274581	280	1,347	302	300	300	6	10,169	244.314	3,190	715	2.37
300k	UBB-6	4 D	10-11 R	1	1	300	345	268,540	317.61	8,067		25	0.98425	191	7.520	47.75	282	1274581	280	1,347	302	300	300	6	10,169	244.314	3,190	715	2.37
200ka	UBB-6	5 D	6-7 L	2	1	200	230	178,930	372.25	9,455		25	0.98425	127	5.000	31.75	314	1498891	280	997	223	300	300	6	10,169	244.314	2,322	520	2.33
200ka	UBB-6	6 D	6-7 R	2	1	200	230	178,930	372.25	9,455	•	25	0.98425	127	5.000	31.75	317	1480731	280	1,006	225	300	300	6	10,169	244.314	2,322	520	2.31
250k	UBB-6	7 D	6-7 L	1	1	250	288	223,880	299.57	7,609	•	25	0.98425	159	6.260	39.75	314	1498892	280	1,248	280	250	250	6	5,814	139.687	2,050	459	1.64
200k	UDD-0		0-7 K	1	1	250	288	223,880	299.57	7,609	•	25	0.98425	159	6.260	39.75	295	1477941	280	1,173	263	250	250	6	5,814	139.687	2,050	459	1.75
250ka	1000-0	0 0	9-10	- 4	2	200	230	178,930	400.08	11,5/2	•	25	0.98425	127	5.000	31.75	313	1477821	280	994	223	300	300	6	10,169	244.314	1,550	347	1.56
300k	UBB.7	1 D	9-10	4	2	200	200	268,540	360.33	9,000		23	0.98425	159	6.260	39.75	314	1495891	280	1,248	280	300	300	9	14,799	355.558	3,237	725	2.59
150k	UBB-7	2 E	2.3	4	2	150	173	134 270	361.43	9,007		10	0.30423	191	1.520	47.75	290	14//941	280	1,409	316	300	300	6	10,169	244,314	3,190	/15	2.26
200k	UBB-7	3 E	2-3	3	2	200	230	178,930	255 12	6,480		25	0.74803	120	4.901	23.94	200	1400731	280	1.006	153	250	250	6	5,814	139.687	1,408	315	2.06
200k	UBB-74	4 E	2-3	2	2	200	230	178,930	255.12	6,480		25	0.98425	127	5.000	31.75	317	1480731	200	1,000	225	250	200	6	5,914	139.007	2,027	633	2.01
350k	UB8-7	5 E	2-3	1	2	350	403	313,200	317.81	8.072	+	25	0.98425	124	4 882	55.75	205	1400731	280	1,000	260	200	200	6	10,169	244 214	2,027	714	2.01
250k	UB8-7	6 G	1-2	2	1	250	288	223.880	306.47	7,784		25	0.98425	159	6.260	39.75	314	1408802	280	1 248	280	250	260	6	5.814	139 687	1 959	430	1.67
400k	UBB-7	7 G	2-3	1	2	400	460	356,700	317.51	8,065	+	25	0.98425	140	5.512	63.75	295	1477941	305	1.881	421	300	300	6	10.169	244.314	3,192	715	1.70
150k	UB8-7	8 G	3-4	4	2	150	173	134,270	331.69	8,425		19	0.74803	126	4.961	23.94	286	951800501	280	685	153	250	250	6	5.814	139.687	1.672	375	2.44
200k	UBB-79	9 G	3-4	3	2	200	230	178,930	211.29	5,367		25	0.98425	127	5.000	31.75	314	1498891	280	997	223	250	250	6	5,814	139.687	4,121	923	4.13
250k	UB8-80	0 G	3-4	2	1	250	288	223,880	306.47	7,784		25	0.98425	159	6.260	39.75	314	1498892	280	1,248	280	250	250	6	5,814	139.687	1,959	439	1.57
400ka	UB8-81	1 G.8	10-11	2	1	400	460	356,700	497.30	12,632		25	0.98425	140	5.512	63.75	295	1477942	305	1,881	421	350	350	9	23,808	571.981	3,046	682	1.62
400ka	UBB-82	2 G.8	8-9	2	1	400	460	356,700	497.30	12,632	+	25	0.98425	140	5.512	63.75	282	1274581	305	1,798	403	350	350	9	23,808	571.981	3,046	682	1.69
400k	UBB-83	3 G.8	8-9	1	2	400	460	356,700	306.18	7,777	+	25	0.98425	140	5.512	63.75	282	1274582	305	1,798	403	300	300	6	10,169	244.314	3,432	769	1.91
400ka	UB8-8/	4 G.8	9-10	2	1	400	460	356,700	497.30	12,632	+	25	0.98425	140	5.512	63.75	282	1274581	305	1,798	403	350	350	9	23,808	571.981	3,046	682	1.69
-400k-	V88-8	5 G.8	9-10	1	2	400	460	356,700	306.18	7,777	•	25	0.98425	140	5.512	63.75	282	1274582	305	1,798	403	300	300	6	10,169	244.314	3,432	769	1.91
20010	1000.41		1-8	1.4	1	200	230	178,930	489.30	12,428	•	25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	9	14,799	355.558	1,956	438	1.97
20010	000-0		0.00	1.4	10	200	230	178,930	459.26	11,665	· ·	25	0.98425	127	5.000	31.75	313	1477822	280	994	223	300	300	9	14,799	355.558	2,220	497	2.23
Other Na Criteria:	2. Py = 3. Pe = tations L and/o Type = Max. yik Pe / Py	AE HIZ REZEVICIONDIALIZARIA BERNALINA	ded Brace a ded Brace b he Grid loca ate protes se ate pro	In the COLUMN STATE STAT	BRITTAL HV2 BERNORSKAND	ngh = core h = x = 1 off add/or (plate(+) = OK 0 = OK	SEL PHELPS COMSTRATES 50	ctonal area re L, = Lwp, spectively. n (+)	x Fy, whe E = modul	re Fy = act	tual materia	si yield po	int from mi	certificati	D			S RA PREDIS IERS	ROFE WAN No. C Exp. 9	04873 30/2 30/2	1-2-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	OWIEER A							
	144.	- 0.5	1223	30WAL	BERDI	HEDOR	HEMS												EOF	CALIF	ORNI	/							

Page 2 / 2

	Brace	Location					4. SI	itter	1	. 1	-	17	1			5. Welding	_					5. Bolts/AS1	M A325S	2)		7.1	End Conne	ction Crucil	lorm	
100	Grid		Floor	Leng	th of at Brace			1	P. 34	hesson	1	Leader	llun	Malel alars	Minhe sizes	Shear	Weld 0	apacity	Min.		No.	Shear	apacity		Width	Thk.	Bolt	Nel Area	Tension	
Mark	Line	Grid	Level	L	1	L2	L3	A3	Ar	Ka	Kelk	20	Туре	s size	weld size	Pb	F	w	(PD, PW) Ps	Ps/Py	joint	F	bon b	Pb/Py	Wt	1	d	(4 holes) Anet	Pnet	Pnet/P
_	_			(mm)	(in)	(in)	(in)	(in ²)	Million	Q.Fivi61	ILIF	(Infin)		(mm)	(in)	(kN)	(kN)	(kips)	(kips)		(pcs)	(kN)	(kips)	1	(mm)	(mm)	(mm)	(in ²)	(kips)	
DOka	1	B-C	1	9.266	364.81	329.50	17.66	20.73	435.95	159.406	0.89	794.1	nartial	14	0.551	6 711	6 174	1 300	1 399	6.00	16	2 200	617	2.22	280		20	16.24	797	2.24
50k	1	F-G L	3	4,297	169.19	139.87	14.66	15.93	758.84	128,385	0.96	692.9	partial	12	0.472	4,450	4,344	977	977	6.37	10	1,724	388	2.52	280	19	29	12.52	519	3.38
150k	1	F-G R	3	4,297	169.19	139.87	14.66	15.93	758.84	128,385	0.96	692.9	partial	12	0.472	4,450	4,344	977	977	6.37	12	1,724	388	2.53	280	19	29	12.52	519	3.38
250k	1	F-G L	2	4,315	169.88	135.74	17.07	20.73	1267.01	215,233	0.96	729.1	partial	14	0.551	6,162	5,668	1,274	1,274	4.51	16	2,299	517	1.83	280	25	29	16.24	746	2.64
250k	1	F-G R	2	4,315	169.88	135.74	17.07	20.73	1267.01	215,233	0.96	729.1	partial	14	0.551	6,162	5,668	1,274	1,274	4.51	16	2,299	517	1.83	280	25	29	16.24	746	2.64
250ka	1	F-G L	1	6,166	242.75	208.62	17.07	20.73	844.93	205,007	0.92	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	4.62	16	2,299	517	1.85	280	20	29	16.24	739	2.64
150k	1	G-H L	3	4,272	168.19	138.87	14.66	15.93	764.04	128,503	0.96	692.9	partial	12	0.472	4,450	4,344	977	977	6.37	12	1,724	388	2.53	280	19	29	12.52	519	3.38
150k	1	G-H R	3	4,272	168.19	138.87	14.66	15.93	764.04	128,503	0.96	692.9	partial	12	0.472	4,450	4,344	977	977	6.37	12	1,724	388	2.53	280	19	29	12.52	519	3.38
250k	1	G-H L	2	4,286	168.75	134.62	17.07	20.73	1276.85	215,469	0.96	729.1	partial	14	0.551	6,162	5,668	1,274	1,274	4.56	16	2,299	517	1.85	280	25	29	16.24	739	2.64
250K	-	G-H R	2	4,286	168.75	134.62	17.07	20.73	1276.85	215,469	0.96	729.1	partial	14	0.551	6,162	5,668	1,274	1,274	4.56	16	2,299	517	1.85	280	25	29	16.24	739	2.64
250ka	1	G-H R	1	6.221	244.94	210.80	17.07	20.73	836.57	204,907	0.92	739.1	partial	14	0.551	6.246	5,740	1,292	1,292	4.62	16	2,299	517	1.85	280	20	29	16.24	739	2.04
200ka	2	F-G R	4	7,263	285.94	250.62	17.66	20.73	570.02	162,989	0.91	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.16	16	2,299	517	2.29	280	25	29	16.24	746	3.31
00ka	2	F-G L	4	7,258	285.75	250.44	17.66	20.73	570.43	163,001	0.91	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.16	16	2,299	517	2.29	280	25	29	16.24	746	3.31
200k	2	F-G L	3	4,328	170.38	135.06	17.66	20.73	1029.24	175,357	0.98	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	5.92	16	2,299	517	2.29	280	25	29	16.24	746	3.31
200k	2	F-G R	3	4,328	170.38	135.06	17.66	20.73	1029.24	175,357	0.98	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	5.92	16	2,299	517	2.29	280	25	29	16.24	746	3.31
150k	4	E-F	4	6.709	264.13	234.81	14.66	15.93	460.70	121.681	0.91	692.9	partial	14	0.551	4,450	6,174	1,388	1,388	6.23	16	2,299	517	2.32	280	10	29	15.24	510	3.31
150k	4	E-F	3	3,848	151.50	122.19	14.66	15.93	862.87	130,725	0.97	692.9	partial	12	0.472	4,450	4,344	977	977	6.37	12	1,724	388	2.53	280	19	29	12.52	519	3.38
200k	4	E-F	2	3,689	145.25	109.94	17.66	20.73	1247.80	181,243	1.01	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	5.98	16	2,299	517	2.31	280	25	29	16.24	739	3.31
200k	4	E-F	1	5,453	214.69	179.37	17.66	20.73	786.33	168,815	0.94	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	5.98	16	2,299	517	2.31	280	25	29	16.24	739	3.31
200k	5	A-B R	2	5,845	230.13	194.81	17.66	20.73	726.59	167,206	0.93	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	6.37	16	2,299	517	2.46	280	25	29	16.24	695	3.31
200k	5	A-B R	1	5,845	230.13	194.81	17.00	20.73	1047.28	248.401	0.93	785.3	partial	14	0.551	6,458	5,940	1,336	1,336	6.37	16	2,299	517	2.46	280	25	29	16.24	695	3.31
300k	5	A-B L	1	6,013	236.75	197.60	19.57	20.73	1049.44	248,455	0.93	785.3	partial	14	0.551	6,637	6,105	1,373	1,373	4.09	20	2,873	646	1.92	280	25	29	16.24	739	2.20
200k	5	B-C L	2	5,845	230.13	194.81	17.66	20.73	726.59	167,206	0.93	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	6.37	16	2,299	517	2.46	280	25	29	16.24	695	3.31
200k	5	B-C R	2	5,845	230.13	194.81	17.66	20.73	726.59	167,206	0.93	764.1	partial	14	0.551	6,458	5,940	1,336	1,336	6.37	16	2,299	517	2.46	280	25	29	16.24	695	3.31
300k	5	B-C L	1	6,013	236.75	197.60	19.57	20.73	1049.44	248,455	0.93	785.3	partial	14	0.551	6,637	6,105	1,373	1,373	4.09	20	2,873	646	1.92	280	25	29	16.24	739	2.20
300k	7	B-C R	1	6,025	237.19	198.04	19.57	20.73	1047.28	248,401	0.93	785.3	partial	14	0.551	6,637	6,105	1,373	1,373	4.09	20	2,873	646	1.92	280	25	29	16.24	739	2.20
150ka	7	F-G	2	10,192	401.25	359.74	20.76	20.73	687.56	275.883	0.88	799.1	parca	14	0.551	0,753	0,212	1,397	1,39/	0.27 N/A	16	2,299	51/	1.75	280	25	29	16.24	695	1.89
i50ka-	7	-F-G	1	9,206	362.44	320.93	20.76	20.73	766.46	277,793	0.89		-							N/A	20	2,873	646	1.75	280	25	29	16.24	695	1.89
100ka	7 :	G-G.8	. 4	.8,336 .	328.19	292.87	17.66	20.73	490.07	160,836	0.90	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.23	16	2,299	517	2.32	280	25	29	16.24	737	3.31
50ka	7	G-G.8	2	9,628	379.06	337.55	20.76	20.73	730.55	276,924	0.88									N/A	20	2,873	646	1.75	280	25	29	16.24	695	1.89
SOka	7	G-G.8	14	8,355	328.94	287.43	20.76	20.73	850.72	279,833	0.89	7044			0.001		0.171			N/A	20	2,873	646	1.83	280	25	29	16.24	664	1.89
300k	8	A-B	0÷1	6.044	237.94	198.79	19:57	20.73	1043.58	248.308	0.91	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.16	16	2,299	517	2.29	280	25	29	16.24	746	3.31
SOka	11	C-D R	2	7,303	287,50	245.99	20.76	20.73	984.61	283.074	0.90		perces		0.001	4,007	0,100	1,010	1,010	N/A	20	2,873	646	1.83	280	25	29	16.24	664	1.89
50ka	11	C-D L	2	7,263	285.94	244.43	20:76	20.73	990.48	283,216	0.90									N/A	20	2,873	646	1.83	280	25	29	16.24	664	1.89
400k	11	C-D R	24.	5,834	229.69	181.98	23.85	22.67	1461.91	335,782	0.94									N/A	24	3,448	775	1.84	305	25	29	18.17	777	1.85
400k	11_0	C-D L		5,802	228.44	180.73	23.85	22.67	1470.97	336,026	0.94	700.4	and at		0.00	0.040	6 740	1 010	1 000	N/A	24	3,448	775	1.84	305	25	29	18.17	777	1.85
100ka	10	D-E	2	8182	390.09	274 42	23.85	22 67	1004.15	237,002	0.88	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	3.86	16	2,299	517	1.54	280	25	29	16.24	737	2.20
450k	11	D-E	1.70	6,817	268.38	221.26	23.56	22:67	1365.28	366,408	0.91						-			N/A	24	3,448	775	1.33	305	25	29	18.17	743	1.64
100ka	10	E-F	14%	10,655	419.50	380.35	19.57	20.73	563.08	236,212	0.88	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	3.86	16	2,299	517	1.54	280	25	29	16.24	737	2.20
400ka	11	E-F	0.12	8,680	341,75	294.04	23.85	22.67	941.56	321,778	0.90									N/A	24	3,448	775	1.84	305	25	29	18.17	777	1.85
450k	11	E-F	1.01	7,347	289.25	242.13	23.56	22.67	1257.84	363,829	1.02									N/A	24	3,448	775	1.71	305	25	29	18.17	743	1.64
200ka	A	2-3 R	2	7,745	304,94	269.62	17.66	20:73	531.06	161,940	0.91	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.16	16	2,299	517	2.29	280	25	29	16.24	746	3.31
50ka	6	2-3 E	4 - 4	6 147	242.00	207.87	17.00	20.73	529.39	205 177	0.90	799.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.23	16	2,299	517	2.32	280	25	29	16.24	737	3.31
50ka	A	2-3 L	115	6,166	242.75	208.62	17.07	20.73	844.93	205,107	0.92	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	4.62	16	2,299	517	1.85	280	25	29	16.24	739	2.64
00ka	A	5-6 R	20	7;695	302.94	267.62	17.66	20,73	534.91	162,044	0.91	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.23	16	2,299	517	2.32	280	25	29	16.24	737	3.31
00ka	A	5-6 L	12-	7,710	303.55	268/25	17.68	20.73	533.70	162,011	0.91	794.1	partial	14	0.551	6,711	6,174	1,388	1,388	6.23	16	2,299	517	2.32	280	25	29	16.24	737	3.31
50ka	A	5-6 R	71-	6,277	247.13	212.99	17.07	20.73	828.37	204,710	0.91	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	4.62	16	2,299	517	1.85	280	25	29	16.24	739	2.64
60ka	A	56 L	1 445	6,288	247,56	213:43	17.07	20.73	826.74	204,671	0.91	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	4.62	16	2,299	517	1.85	280	25	29	16.24	739	2.64
30%a 300k	80	9-10	1	6.025	237.19	198.04	19.57	20.73	1047.20	200,698	0.90	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	4.58	16	2,299	517	1.83	280	25	29	16.24	746	2.64
1000	361	31		10,020	A GALLER	100004	10.01.	au.13	1041.20	270,401	0.83	100.3	parta	14	0.351	0,037	0,105	1,373	1,373	4.09	- 20	2,673	040	1.92	260	25	29	10.24	7.39	2.20

OFESS

Calculations for Unbonded Brace welds, bolts, and end cruciform net area

UCSF Mission Bay Campus Community Center Building 21B

Feb. 6, 2003

	Brace	Location					4. SI	tiffness								5. Welding						5. Bolts(AS)	TM A32550	C)		7. E	End Conne	dion Crucifi	orm	
LIBR	Grid		Eleor	Linhood	gih ol lad Brace				Stif	Tness		Length	Made	Made alar	Manual articles	Shear	Weld 0	Capacity	Min.		No.	Sheart	Japacity		Width	Thk	Bolt	Nel Area	Tension	
Mark	Line	Grid	Level	Unbond	eo brace	1.2	13	A3	ke	Ke	KelK	1.00	Type	weld size	Weld size	Capacity			(Pb, Pw)	Ps/Py	per	of	Bolt	Pb/Py	MA		hole	(4 holes)	Capacity	Pnet/Py
		-		(mm)	(in)	60)	(in)	(in2)	(kfm)	(k infin)	THEFT	(mm)	1900	(mm)	(in)	GeND	0.00	(kine)	(kine)		(ore)	0.00	B (bins)	,	MC .	1		(m2)	Priet	,
	-				6.0.2	07	1.17	10.7	Genty	(A straig	_	<i>(,</i>		Unity	44.4	(int)	(int)	(repoy	(reps)		(pea)	(10.4)	(who)		(mm)	(mm)	(mm)	10.7	(KIPS)	_
200ka	D	10-11 L	4	9.327	367.19	331.87	17.66	20.73	433.90	150 324	0.80	704.4	natial	14	0.661	0.744	0 174	1 300	4.000	6.00		0.000	647	0.00	200			40.04	20.2	
200ka	D	10-11 R	4	9.327	367.10	331.87	17.66	20.75	422.00	160,024	0.00	704.1	purcan	14	0.301	0,711	0,174	1,366	1,388	6.23	16	2,299	517	2.32	280	25	29	16.24	737	3.31
250ka	0	10-11 1	2	7.614	200.75	265.62	17.00	20.73	433.90	100,024	0.00	739.1	partial	14	0.561	0,711	0,174	1,368	1,388	6.23	16	2,299	517	2.32	280	25	29	16.24	737	3.31
250ka	D	10-11 P	2	7.614	200.75	205.02	47.07	20.73	670.20	200,910	0.90	739.1	perua	14	0.501	0,240	5,746	1,292	1,292	4.62	16	2,299	517	1.85	280	25	29	16.24	739	2.64
300k	D	10-11 1	4	5.980	235.44	196.20	10.57	20.73	1055.00	200,918	0.90	739.1	partial	14	0.551	6,246	5,746	1,292	1,292	4.62	16	2,299	517	1.85	280	25	29	16.24	739	2.64
300k	D	10-11 R	1	5,980	235.44	196.29	19.57	20.73	1055.99	248,620	0.93	785.3	partial	14	0.551	6,637	6,105	1,373	1,373	4.55	20	2,873	646	2.14	280	25	29	16.24	664	2.20
200ka	D	6.7 1	2	7.420	202.13	256.81	17.66	20.73	666 72	162.621	0.93	704.1	partial	14	0.501	0,03/	6,105	1,3/3	1,373	4.55	20	2,873	646	2.14	280	25	29	16.24	664	2.20
200ka	D	6.7 R	2	7 347	289.25	253.94	17.66	20.73	562.82	162,001	0.01	704.1	partial	14	0.501	0,711	0,174	1,300	1,300	0.22	16	2,299	517	2.31	280	25	29	16.24	739	3.31
250k	D	67 1	1	5.693	224 13	189.99	17.02	20.73	973 66	206.004	0.97	734.1	partial	14	0.501	0,711	0,174	1,388	1,388	6.16	16	2,299	517	2.29	280	25	29	16.24	746	3.31
250k	D	67 R	1	5.634	221.81	187.68	17.07	20.73	014 36	200,004	0.92	720.1	partial	14	0.001	0,102	5,668	1,2/4	1,274	4.55	16	2,299	517	1.65	280	25	29	16.24	739	2.04
200ka	D	9-10	4	9.327	367.19	331.87	17.66	20.73	433.90	159 324	0.89	704.1	partial	14	0.001	6,102	0,000	1,2/4	1,279	4.65	10	2,299	517	1.97	280	20	29	16.24	393	2.64
250ka	D	9-10	2	7.614	299.75	265.62	17.07	20.73	670.28	200.918	0.90	739.1	nortial	14	0.551	6 246	6 746	1,300	1,300	4.60	10	2,239	517	4.56	200	60	29	10.24	737	3.31
300k	D	9-10	1	5.980	235.44	196.29	19.57	20.73	1055.99	248 620	0.93	785.3	nartial	14	0.551	6,240	6 106	1,232	1,232	4.96	10	2,299	517	1.60	280	20	29	10.24	739	2.64
150k	F	2.3	4	7.426	202.38	263.06	14.66	15.03	412.47	120,507	0.90	602.0	portial	19	0.301	4,460	4.344	1,373	1,373	4.30	20	2,8/3	040	2.05	280	20	29	10.24	695	2.20
200k	E	2-3	3	4 328	170.38	135.06	17.66	20.73	1029.24	175 357	0.90	764.1	partial	14	0.472	6,450	6.040	1 226	9//	6.02	12	1,729	300	2.53	280	19	29	12.52	519	3.38
200k	F	2.3	2	4 328	170.38	135.06	17.66	20.73	1020.24	175,357	0.00	764.1	partial	14	0.501	0,400	5,940	1,330	1,330	5.82	10	5,299	517	2.29	280	20	29	16.24	740	3.31
350k	E	2-3	1	6.037	237.69	196.18	20.76	20.73	1214 35	288.636	0.90	704.1	penae	14	0.331	0,438	5,940	1,336	1,335	5.92	16	2,299	517	2.29	280	25	29	16.24	745	3.31
250k	G	1-2	2	5.312	209.13	174.99	17.07	20.73	998.30	208,789	0.93	720.1	nartial	14	0.661	6 163	6 6 6 9	1 374	1 974	4.60	20	2,873	640	1.70	280	20	29	10.24	720	1.69
400k	G	2-3	1	5.845	230.13	182.42	23.85	22.67	1458.76	335.697	0.94	140.1	parties	14	0.301	0,102	2,000	1,274	1,2/14	4.00 N/A	24	2,299	276	1.00	200	20	29	10.24	739	1.04
150k	G	3-4	4	6,471	254.75	225.44	14.66	15.93	479.29	122.099	0.91	692.9	partial	12	0.472	4.450	4.344	977	977	6.37	12	1 724	388	2.53	280	10	29	12.52	519	3.98
200k	G	3-4	3	3,500	137.81	102.50	17.66	20.73	1331.50	183,497	1.03	764.1	partial	14	0.551	6.458	5 940	1.336	1 3 36	5.08	16	2 200	517	2.35	280	26	20	16.24	790	3.31
250k	G	3-4	2	5,312	209.13	174.99	17.07	20.73	998.39	208,789	0.93	729.1	partial	14	0.551	6 162	5 668	1.274	1 274	4.56	16	2 200	517	1.85	280	25	20	16.24	730	2.64
400ka	G.8	10-11	2	8,585	338.00	290.29	23.85	22.67	952.91	322.083	0.90						4/404	1001	1,411.4	N/A	24	3.448	775	1.84	305	25	29	18.17	777	1.85
400ka	G.8	8-9	2	8,585	338.00	290.29	23.85	22.67	952.91	322.083	0.90									N/A	24	3,448	775	1.04	305	25	20	18.17	743	1.85
400k	G.8	8-9	1	5,048	198.75	151.04	23.85	22.67	1725.11	342.865	0.96									N/A	24	3,448	775	1.03	305	25	20	18.17	743	1.85
400ka	G.8	9-10	2	8,585	338.00	290.29	23.85	22.67	952.91	322.083	0.90									N/A	24	3,448	775	1.00	305	25	20	18.17	743	1.00
400k	G.8	9-10	1	5,048	198.75	151.04	23.85	22.67	1725.11	342,865	0.96		-							N/A	24	3.448	775	1.93	305	25	29	18.17	743	1.85
200kb	J	7-8	4	10,252	403.63	368.31	17.66	20.73	391.93	158,193	0.88	799.1	partial	14	0.551	6.753	6.212	1.397	1 397	6.27	16	2 299	517	2.32	280	25	29	16.24	737	3.31
200kb	J	9-10	4	9,412	370.56	335.25	17.66	20.73	429.64	159,209	0.89	799.1	partial	14	0.551	6.753	6 212	1.397	1 397	6.27	16	2 200	517	2.32	280	25	20	16.24	737	3.91
											2.00		procession of	14	5.501			1,000	-,	9.67	10	6,609		a04	2.50			10.24	- 01	0.01
														-				-				-								
NOTES:	1. Ke	= Unbonde	d Brace	stiffness	= ke x L	1 [kips/in	x in], wh	ere L1 =	length of	Unbonded	Brace, a	nd																		

3: s = leg length of w 4. Pb = shear capaci 5. Pw = weld capacit

of waid-partic) of two risks = $\phi F_{ab} A_{ab} \sim 0.8 \times 0.8 F_{y} \times A$ party of two risk plates = $\phi F_{ab} A_{ab} \approx 0.78 \times 0.8 \times F_{ba} \times A_{b}$ minima limits differing frequency of two risks of two effective right-endland area of weld in (-) (pice) hance, the is is addreaded briggings in the design (in (-) (pice) hance, the is is addreaded briggings in the design (in (-) (pice) hance, the is is addreaded briggings in the design (in (-) (pice) hance, the is is addreaded briggings in the design (in (-) (pice) hance, the is is addreaded briggings in the design (in (-) (pice) hance, the is is addreaded briggings in the design (in (-) (pice) hance, the is addreaded briggings in the design (in (-) (pice) hance, the (-) (pice) hance (-) (pice) hance (-) (pice) hance (in (-) (pice) hance (-) (pice) hance (-) (pice) hance (-) (pice) hance (in (-) (pice) hance (-) (For the or leg of the The putp Pa = di

Criteria	Min(Pt P _B /Py	Ew)/ P	y>10	=> CK => OK	10313	0844	ORGa	IRTE
alan ga an		NON ISIN		Ant		A	1	COM
		ONDI	101	COMO	50.D		76	29
-		RE	THE	HE HE	AL PR		AL N	HEL
and and		5 H	0	Wi Sha	THM	SED.	THE	4 13
š	SAC.	ENG	AMC	1 22	61.0	J an	(UB)	SN 1

Page 2 / 2

CYCLIC TESTS OF NIPPON STEEL CORPORATION UNBONDED BRACES

PROJECT: Kaiser Santa Clara Medical Center

DATE: January 25, 2001

A Report to Ove Arup & Partners California, Ltd. and Office of Statewide Health Planning and Development

Submitted By

FOR

Nippon Steel Corporation Tokyo, Japan

FEB 25 'U3'

Prepared By

SUBMITTAL NO.

X17

Nippon Submittals with Uniaxial Cyclic Tests Performed for Kaiser Santa Clara Medical Center

APPENDIX A

Additional Images

Plan View Rutter Center (Google Maps. Note outdoor swimming pool at 4th floor deck and high roof in blue over the 4th floor gym. Adjacent parking structure at upper left.)

West Elevation (Google StreetView. Parking and stair at far left.)

South Elevation (Google StreetView, looking northeast. Transfer girder supports load above loading dock. Stair tower for parking at far left.)

East Elevation with Tower at Northeast Corner (Google StreetView, looking south)

Northeast Corner with Tower (Google StreetView, looking southwest)

East Elevation at Atrium Entrance (Google StreetView, looking south)

North Elevation (Google StreetView, looking southeast)

Atrium at East Entrance (Google Earth photo)

L	JC Ca	ampu	s: San Francisco I	lission Bay	/	Date:		10/31/2020	
Buil	lding	CAAI	N: 3003	Auxiliary CAAN:		By Firm:	RUTHE	RFORD + CH	EKENE
Bui	lding	Nam	e: UCSF Rutte	r Center		Initials:	EFA/ CLP	Checked:	BL
Buildi	ng Ao	ddres	s: 1675 Owens St, San Fr	ancisco, C/	A 94158	Page:	1	of	3
				ASCE 4	1-17				
		C	collapse Prevention	Basic	Configu	iration	Check	list	
LOW	SEI	SMI	CITY						
BUILD	ING	SYS	TEMS - GENERAL						
					Descriptio	n			
C NC	N/A	U	LOAD PATH: The structure contains a	complete, well	-defined load	oath, including	structural el	ements and conn	ections, that
00	\Box	\Box	serves to transfer the inertial forces as Sec. A 2.1.1. Tier 2: Sec. 5.4.1.1)	sociated with th	ne mass of all e	elements of the	e building to t	he foundation. (C	ommentary:
			Comments: Metal deck or meta diaphragms at each level to deliv	al deck with o er lateral forc	concrete fill s	spanning to sel braced fra	steel beam mes (BRBF	crossties func s) in both dire	tion as the ctions. The
			load path is not always well-define	ed but is judg	ed to comply	with the inte	nt of this cl	neck.	
	NI/A							in na stat ha vilalin er in	
		Ū.	0.25% of the height of the shorter bi	stance betweer uilding in low s	eismicity, 0.5%	% in moderate	seismicity,	acent building is and 1.5% in high	greater than n seismicity.
			(Commentary: Sec. A.2.1.2. Tier 2: Se	ec. 5.4.1.2)					
			Comments: An adjacent garage	structure of u	nknown heig nter is 50' so	ht is separate	ed from Rut	tter Center by a	n unknown
						the gap sho	uiu be 9 .		
	N/A	U	MEZZANINES: Interior mezzanine lev force-resisting elements of the main s	els are braced tructure. (Com	independently mentary: Sec.	from the main A.2.1.3. Tier 2	structure or Sec. 5.4.1.	are anchored to 3)	the seismic-
			Comments: There are no mezz	anine levels					
BUILD	ING	SYS	TEMS - BUILDING CON	FIGURAT	ION				
					Descriptio	n			
C NC	N/A	U							
		-	WEAK STORY: The sum of the shea	r strengths of t	he seismic-for	ce-resisting sy	stem in any	story in each dir	ection is not

		N/A		WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not less than 80% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)
				Comments: The total BRB area increases from the top story down to the first story.
ပ 🖸		N/A	U	SOFT STORY: The stiffness of the seismic-force-resisting system in any story is not less than 70% of the seismic-force- resisting system stiffness in an adjacent story above or less than 80% of the average seismic-force-resisting system stiffness of the three stories above. (Commentary: Sec. A.2.2.3. Tier 2: Sec. 5.4.2.2) Comments: The total BRB area increases from the top story down to the first story.
с П	NC	N/A	U	VERTICAL IRREGULARITIES: All vertical elements in the seismic-force-resisting system are continuous to the foundation. (Commentary: Sec. A.2.2.4. Tier 2: Sec. 5.4.2.3)

UC Campu	IS: San Francisco M	lission Bay	Date:		10/31/2020	
Building CAA	N: 3003	Auxiliary CAAN:	By Firm:	RUTHE	RFORD + CH	EKENE
Building Nam	e: UCSF Rutter	Center	Initials:	EFA/ CLP	Checked:	BL
Building Addres	s: 1675 Owens St, San Fra	ancisco, CA 94158	Page:	2	of	3
C NC N/A U	Collapse Prevention	SCE 41-17 Basic Config	uration	Check	list	re than 30%
	in a story relative to adjacent stories, e Sec. 5.4.2.4) Comments: The structure is large floor. The steps are primarily at th	xcluding one-story penthou ely rectangular, and the le upper roof which is sin	ises and mezza BRB frames a milar to a pent	nines. (Comi re continuo house.	us from the roo	2.2.5. Tier 2: f to the first
CNCN/AU EEEEE	MASS: There is no change in effectiv mezzanines need not be considered. (Comments: The weights of the 2	e mass of more than 50% Commentary: Sec. A.2.2.6 nd and 4 th floors are sim	from one story . Tier 2: Sec. 5.4 ilar, and the ro	to the next. 4.2.5) oof level is li	Light roofs, pentl ighter.	houses, and
C NC N/A U	TORSION: The estimated distance be the building width in either plan dimens Comments: The building footprin 20%.	tween the story center of r sion. (Commentary: Sec. A t is approximately squar	nass and the st .2.2.7. Tier 2: S e in plan and t	ory center of ec. 5.4.2.6) he floors ha	rigidity is less th	an 20% of s less than

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

				Description
C C		N/A	U	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within 50 ft (15.2m) under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1)
				Comments: Per "Table 1 - UCSF Pre-2006 BRBF Buildings – Geotechnical Characteristics and Site Hazards" by Egan (2019), the mapped liquefaction potential is very high but Note jj states "Available design drawings indicate buildings are supported on piles driven to refusal, so liquefaction-related hazard to building is probably low."
C C	NC	N/A	U	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1)
				Comments: Per "Table 1 - UCSF Pre-2006 BRBF Buildings – Geotechnical Characteristics and Site Hazards" by Egan (2019), the building is not subject to slope failure.
C C	NC	N/A	U	SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1)
				Comments: Per "Table 1 - UCSF Pre-2006 BRBF Buildings – Geotechnical Characteristics and Site Hazards" by Egan (2019), the site is 8.5 miles from the San Andreas Fault and not susceptible to surface fault rupture.

UC Campu	s: San Francisco M	lission Bay	Date:		10/31/2020	
Building CAAN	۷: 3003	Auxiliary CAAN:	By Firm:	RUTHE	RFORD + CH	EKENE
Building Name	e: UCSF Rutter	Center	Initials:	EFA/ CLP	Checked:	BL
Building Address	s: 1675 Owens St, San Fra	ancisco, CA 94158	Page:	3	of	3
C HIGH SEISM	Collapse Prevention	ASCE 41-17 Basic Configu HE FOLLOWING	uration B ITEMS	Check	list DITION T	O THE
ITEMS FOR I	MODERATE SEISMIC	ITY)				
FOUNDATION	CONFIGURATION	Doscriptio	n			
		Descriptio	11			
C NC N/A U	OVERTURNING: The ratio of the lease the building height (base/height) is gree Comments: The building width is B = 220' for a The building height from the 1 st flo B/H = 2.939 Sa = 1.794g for BSE-2E $0.6 \times Sa = 1.08$ B/H > 0.6 Sa.	thorizontal dimension of the ater than $0.6S_a$. (Commenta all but the small central second to the roof is H = 75',	seismic-force- ry: Sec. A.6.2.	resisting sys 1. Tier 2: Seo	tem at the founda c. 5.4.3.3)	ation level to
C NC N/A U	TIES BETWEEN FOUNDATION ELE piles, and piers are not restrained by b Tier 2: Sec. 5.4.3.4) Comments: Per "Table 1 - UCSF Hazards" by Egan (2019), the loca pile caps, and a 12" thick slab-on-	MENTS: The foundation has leams, slabs, or soils classifi Pre-2006 BRBF Building ation is Site Class E. The grade.	s ties adequate ed as Site Clas gs – Geotech building is su	e to resist se ss A, B, or C. nical Chara upported on	ismic forces whe (Commentary: S acteristics and S piles driven to	ere footings, Sec. A.6.2.2. Site refusal,

UC Campus:	San Francisco	o Mission Bay	Date:		10/31/2020	
Building CAAN:	3003	Auxiliary CAAN:	By Firm:	Ruth	erford + Che	kene
Building Name:	UCSF Rut	ter Center	Initials:	EFA/ CLP	Checked:	BL
Building Address:	1675 Owens St., San	Francisco, CA 94158	Page:	1	of	4
		ASCE /1-17				

Collapse Prevention Structural Checklist For Building Type S2-S2A

LOW SEISMICITY

SEISMIC-FORCE-RESISTING SYSTEM

				Description
C C	NC	N/A	U	REDUNDANCY: The number of lines of braced frames in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.3.1.1. Tier 2: Sec. 5.5.1.1)
				Comments: There are seven lines of BRB frames in the longitudinal (E-W) direction and five lines of BRB frames in the transvers (N-S) direction.
C	NC	N/A	U	COLUMN AXIAL STRESS CHECK: The axial stress caused by gravity loads in columns subjected to overturning forces is less than $0.10F_y$. Alternatively, the axial stress caused by overturning forces alone, calculated using the Quick Check procedure of Section 4.4.3.6, is less than $0.30F_y$. (Commentary: Sec. A.3.1.3.2. Tier 2: Sec. 5.5.2.1.3)
				Comments: Spot checks for a typical BRB column, typical interior column, and typical exterior column show dead load axial stresses only slightly less than 0.10Fy. For the dead + live case, the stress exceeds 0.10Fy.
C	NC	N/A	U	BRACE AXIAL STRESS CHECK: The axial stress in the diagonals, calculated using the Quick Check procedure of Section 4.4.3.4, is less than 0.50 <i>F_y</i> . (Commentary: Sec. A.3.3.1.2. Tier 2: Sec. 5.5.4.1)
	_			Comments: The Quick Check procedure was used to calculate an average axial brace stress for the BRBs at every floor and results in an average stress in excess of 0.5Fy at every floor with DCRs ranging from 3.4 to 6.2 in the longitudinal (N-S) direction and 3.3 to 4.7 in the transverse (E-W) direction.

CONNECTIONS

	Description
C NC N/A U	TRANSFER TO STEEL FRAMES: Diaphragms are connected for transfer of seismic forces to the steel frames. (Commentary: Sec. A.5.2.2. Tier 2: Sec. 5.7.2) Comments: Diaphragms consisting of 3" metal deck and 4.5" of normal weight concrete fill are used to deliver loads to the BRB frames.
C NC N/A U	STEEL COLUMNS: The columns in seismic-force-resisting frames are anchored to the building foundation. (Commentary: Sec. A.5.3.1. Tier 2: Sec. 5.7.3.1) Comments : Steel columns in the BRB frames are all anchored to the building foundation consisting of piles, pile caps, and a 12" slab-on-grade.

UC Campus:	San Francis	co Mission Bay	Date:		10/31/2020	
Building CAAN:	3003	Auxiliary CAAN:	By Firm:	Ruth	erford + Che	kene
Building Name:	UCSF Ru	utter Center	Initials:	EFA/ CLP	Checked:	BL
Building Address:	1675 Owens St., Sa	n Francisco, CA 94158	Page:	2	of	4
		ASCE 11-17				

ASCE 41-17

Collapse Prevention Structural Checklist For Building Type S2-S2A

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

SEISMIC-FORCE-RESISTING SYSTEM

	Description
CNCN/AU	REDUNDANCY: The number of braced bays in each line is greater than 2. (Commentary: Sec. A.3.3.1.1. Tier 2: Sec. 5.5.1.1) Comments: There are many braced bays in multiple lines of braced frames in both directions. The building is judged to comply with the intent of this check.
C NC N/A U	CONNECTION STRENGTH: All the brace connections develop the buckling capacity of the diagonals. (Commentary: Sec. A.3.3.1.5. Tier 2: Sec. 5.5.4.4) Comments: As the braces are unbonded buckling restrained braces (BRBs), the braces will not buckle, and this check is not applicable. As the braces are unbonded buckling restrained braces (BRBs), they are typically designed for the yield capacity of the braces. Connections were checked for a sample bay and have sufficient capacity to develop the adjusted brace strength of the BRBs.
C NC N/A U	COMPACT MEMBERS: All brace elements meet compact section requirements in accordance with AISC 360, Table B4.1. (Commentary: Sec. A.3.3.1.7. Tier 2: Sec. 5.5.4) Comments: As the braces are unbonded buckling restrained braces (BRBs), this check for compactness of the steel section is not applicable.
	K-BRACING: The bracing system does not include K-braced bays. (Commentary: Sec. A.3.3.2.1. Tier 2: Sec. 5.5.4.6) Comments: There are no K-braced bays.

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)

SEISMIC-FORCE-RESISTING SYSTEM

Description

l	JC Camp	ous: San Fra	ancisco Mis	sion Bay		Date:		10/31/2020	
Bui	Iding CA/	AN: 3003	San Francisco Mission Bay Date: 10/31/2020 3003 Auxiliary CAAN: By Firm: Rutherford + Cheke UCSF Rutter Center Initials: EFA/ C.P Checked: 1675 Owens St., San Francisco, CA 94158 Page: 3 of ASCE 411-17 MacCa 40155 ASCE 41-17 MacCa 4016111 Checklist For Building Type S2-S2 ICES: All column splice details located in braced frames develop 50% of the tensile strength of the Sec. A.3.3.1.3. Tier 2: Sec. 5.5.4.2) Splice details show full penetration welds for the smaller section at the splice, so tensile strength of the smaller section. SPIDe dotails located buckling restrained braces (BRBs), this check for slend is not applicable. VITRENGTH: All the brace connections develop the yield capacity of the diagonals. (Commenta 2: Sec. 5.5.4.4) As the braces are unbonded buckling restrained braces (BRBs), they are typically de capacity of the braces. Connections were checked for a sample bay and have su tevelop the adjusted brace strength of the BRBs. EMBERS: All brace elements meet section requirements in accordance with AISC 341, Table D ctile members. (Commentary: Sec. A.3.3.1.7. Tier 2: Sec. 5.5.4.9) CAS the brace are unbonded buckling restrained braces (BRBs), this che s of the steel section is not applicable.				kene		
Bui	Iding Nar	me: UCS	SF Rutter C	enter		Initials:	EFA/ CLP	Checked:	BL
Buildi	ng Addre	ess: 1675 Owens St	t., San Fran	cisco, CA 9415	8	Page:	3	of	4
Co c nc C E	llapse _{N/A} u E E	COLUMN SPLICES: All colum (Commentary: Sec. A.3.3.1.3. Comments: Splice detai develop the tensile streng	As ructura mn splice def Tier 2: Sec ils show fu gth of the s	SCE 41- al Check tails located in b 5.5.4.2) ull penetration smaller sectio	17 IISt F raced fram welds fo n.	or Build	ding T % of the ten er section	ype S2-S sile strength of th at the splice,	he column. so these
C NC	N/A U	SLENDERNESS OF DIAGON (Commentary: Sec. A.3.3.1.4. Comments: As the brace of diagonals is not applica	NALS: All di . Tier 2: Sec. es are unbo :able.	iagonal element: . 5.5.4.3) onded bucklin	s required g restrair	to carry comp ned braces (I	oression hav BRBs), this	e <i>Kllr</i> ratios less s check for sle	than 200. nderness
C NC	N/AU CC	CONNECTION STRENGTH: A.3.3.1.5. Tier 2: Sec. 5.5.4.4) Comments: As the brace for the yield capacity of t capacity to develop the a	All the brac es are unbo the braces adjusted bra	e connections of onded bucklin s. Connection ace strength of	levelop the g restrair s were c of the BR	e yield capacit ned braces (E hecked for a Bs.	y of the dias 3RBs), the a sample b	gonals. (Comme y are typically pay and have	ntary: Sec. designed sufficient
	N/AU	COMPACT MEMBERS: All b moderately ductile members. Comments: As the br compactness of the steel	brace eleme (Commental races are I section is	nts meet sectio ry: Sec. A.3.3.1. unbonded t not applicable	n requiren 7. Tier 2: S buckling e.	nents in accor Sec.5.5.4) restrained	dance with braces (E	AISC 341, Table BRBs), this c	e D1.1, for heck for
C NC	N/A U	CHEVRON BRACING: Beam simultaneous yielding and buc Comments: There are b adequate.	ns in chevror ckling of the poth chevre	n, or V-braced, t brace pairs. (Co on braced an	oays are ca mmentary d V-brace	apable of resis : Sec. A.3.3.2.3 ed bays. A s	ting the vert 3. Tier 2: Sec spot check	ical load resultin c. 5.5.4.6) shows the be	ig from the
C NC	N/A U	CONCENTRICALLY BRACED (Commentary: Sec. A.3.3.2.4. Comments: All the conce joints.	D FRAME JC . Tier 2: Sec. entric brace	DINTS: All the di . 5.5.4.8) es in the BRB	agonal bra frames a	ces frame into	o the beam-c	olumn joints con y into the bear	centrically. n-column
DIAPHF	RAGMS	(STIFF OR FLEXIB	LE)						
				Des	scription	1			

			amn	San Francisco	o Mission Bay	Data:		10/31/2020	
	D					Date.		10/31/2020	
	Bu	lliaing	j CAA	AN: 3003	CAAN:	By Firm:	Ruth	erford + Chel	kene
	Βι	uilding	g Nar	me: UCSF Ru	tter Center	Initials:	EFA/ CLP	Checked:	BL
	Builc	ding A	Addre	ess: 1675 Owens St., Sar	rrancisco, CA 94158	Page:	4	of	4
					ASCE 41-17				
	Сс	olla	pse	Prevention Struct	tural Checklis	t For Build	lina T	vpe S2-S	2A
							0	51	
С	NC	N/A	U	OPENINGS AT FRAMES: Diaphrag	gm openings immediately a	adjacent to the brace	ed frames e	extend less than 2	25% of the
0	Ο	Ο	0						
				Comments: There are many I	arge openings, includir	ng openings adjao	cent to bra	aced frames.	
FLI	EXIE	BLE	DIA	PHRAGMS					
					Descri	otion			
С	NC	N/A	U	CROSS TIES: There are continuous	cross ties between diaphra	agm chords. (Comme	ntary: Sec.	A.4.1.2. Tier 2: Se	ec. 5.6.1.2)
		O	O	Comments: The diaphragms	are metal deck with co	ncrete fill	-		-
				comments. The diaphragins					
С	NC	N/A	U	STRAIGHT SHEATHING: All straig	ght-sheathed diaphragms	have aspect ratios I	ess than 2	-to-1 in the direc	tion being
		Ο		considered. (Commentary: Sec. A.4	.2.1. Tier 2: Sec. 5.6.2)				_
				Comments: The diaphragms	are metal deck with co	ncrete fill.			
С	NC	N/A	U	SPANS: All wood diaphragms with s	pans greater than 24 ft (7.3 Sec. 5.6.2)	3 m) consist of wood	structural p	anels or diagonal	sheathing.
\square	Q	0	Q			n anata fill			
				Comments: The diaphragms	are metal deck with co	ncrete fill.			
<u> </u>	NC					: All diagonally sheat	thed or unbl	ocked wood struct	tural nanel
		N/A	Ū	diaphragms have horizontal spans	less than 40 ft (12.2 m) ar	nd aspect ratios less	than or equ	ual to 4-to-1. (Cor	mmentary:
		-		360. A.4.2.3. THE 2. 360. 3.0.2)					
				Comments: The diaphragms	are metal deck with co	ncrete fill.			
	NO.	N1/4					al 14674-1-1		h e viz + -
C F		N/A		bracing. (Commentary: Sec. A.4.7.1	ns do not consist of a sys . Tier 2: Sec. 5.6.5)	stem other than woo	oa, metal de	еск, concrete, or	norizontal
				Comments: The diaphragms	are metal deck with co	ncrete fill.			
				1					

UC Campus:	San Fra	ancisco	Date:		10/31/2020	
Building CAAN:	3003	Auxiliary CAAN:	By Firm:	Ruth	nerford+Chel	kene
Building Name:	UCSF R	utter Hall	Initials:	CLP/EFP	Checked:	BL
Building Address:	1675 Owens Street, Sa	in Francisco, CA 94158	Page:	1	of	1
	UCOP SE Falling Haza	ISMIC SAFET	Y POLICY	, ary		

	Description
P N/A □ ⊠	Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate (50 ppl or more)
	Comments: Unknown; the site was not visited.
P N/A □ ⊠	Heavy masonry or stone veneer above exit ways or public access areas
	Comments: Unknown; the site was not visited.
P N/A □ ⊠	Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas
	Comments: Unknown; the site was not visited.
P N/A □ ⊠	Unrestrained hazardous material storage
	Comments: Unknown; the site was not visited.
P N/A □ ⊠	Masonry chimneys
	Comments: Given the building vintage and type, it is assumed there are no masonry chimneys.
P N/A □ ⊠	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.
	Comments: Unknown; the site was not visited.
P N/A	Other:
	Comments:
P N/A	Other:
	Comments:
P N/A □ □	Other:
	Comments:

Falling Hazards Risk: Low (Assumed based on vintage, but not evaluated as site was not visited.)

APPENDIX D

Quick Check Calculations Per ASCE 41-17

Floor Areas, Story Idealization

Note:

- 1. The Upper Roof has 15,546 sf. The Lower Roof has 19,028 sf. The Upper Roof is lumped together with the Lower Roof, for a total of 15,546 sf + 19,028 sf = 34,574 sf.
- 2. The mezzanines at the Level 3 sum to 13,310 sf. This is lumped together with the area at the Level 4 of 50,529 sf + 1,118 sf = 51,647 sf to add to 64,957 sf.

Weight Take-off

Weight Take-C)ff for Steel	, BRBs, C	ladding							
GIRDERS: Take	off all stee	l at secoi	nd floor f	rom Lir	ne 8 to 1	1 as repres	entative			
		γ concra	150	pcf			Area tot:	54348		
		γsteel =	490	pcf			sample a	21657		
			SI	ECOND	FLOOR	_				
							Unit			
		Length					weight	Weight	Weight	
	Girder ID	(ft)	B (in)	D (in)	No.	Area (ft ²)	(pcf)	(plf)	(kips)	
NS	W12x16	32			7			26	5.82	
	W18x55	32			3			55	5.28	
	W24X55	32			1			55	1.76	
	W24X62	32			2			62.0	3.97	
	W24X76	32			7			76.0	17.02	
	W24X162	32			2			162.0	10.37	
	PG1-2	32			12	1.25	490.00	612.5	235.20	
EW	W16x26	15.33			10			26	3.99	
	W18x40	21.167			12			40.0	10.16	
	W18x40	32			28			40.0	35.84	
	W24x55	68.33			1			55.0	3.76	
	W24x62	63.67			1			62.0	3.95	
	W27x84	87.67			12			84.0	88.37	
	W24x117	32			1			117.0	3.74	
	W40x167	32			1			167.0	5.34	
	W24x207	77.17			1			207.0	15.97	
							NS	Σ=	279.4	kips
							EW	Σ=	171.1	kips
							Sum NS+	EW	450.5	kips
							Area, ft^	21657		
						1.1	weight, j	osf	22.88	

Columns: Take	off all colu	mns fron	n schedu	le at fir	st floor;	scale othe	r floors					
		γ concr :	150	pcf								
		γsteel =	490	pcf								
					COLUN	ANS						
		Height,			No.		Scale	Weight	Weight			
	Columns	ft			cols	Area (ft ²)	Factor	(psf)	(kips)			
Tower Roof												
Upper Roof	W14xNN	8.625			38							
Lower Roof	W14xNN	25.5	74.875	21.38	75	34574	0.25	3.06	105.94	hand calc		
4	W14xNN	28	49.375	26.75	88	64957	0.74	4.84	314.56			
3	W14xNN				89							
2	W14xNN	21.375	21.375	24.69	96	54348	1.00	7.82	424.84			
								Σ=	845.3	kips		
Note: Weight t	ake-off for	first floc	rcolumn	is; othe	rs estim	ated from	col sched	dule by so	aling for sto	ry height a	nd col si	zes.
Columns at Fire	st Floor to t	hird floo	r									
	W14x90		W10x112	W12x1	20				HSS4x10x1/	2		
plf	90	109	112	120	132	159	193	311	42.05			
no. of col	21	16	4	1	8	17	1	26	2	96		
kips	46.66	26.27	11.06	2.96	26.07	66.73	4.76	199.62	2.08	386.22	0.00	0.
h,ft	24.69							kips	1.1	424.84		
								area, ft^	54348			

BRBS: ESTIMATE	weigths u	sing BKB 1	rs ave	rage to	r all bra	ces					
		γ concr :	150	pcf				1.1			
		γsteel =	490	pcf			Weight B	226.05			
				BRBs	in BRAG	ED FRAME					
		Height,		Lengt	#NS		Total	Weight	Weight		
	Girder ID	ft	Bay, ft	h,ft	BRB	#EW BRB	BRB	(psf)	(kips)		
Tower Roof											
Upper Roof	BRB 12	8.625	16								
Lower Roof	BRB 12	25.5	16	15.05	11	8	19	1.87	64.65		
4	BRB 12	14	16	31.17	14	14	28	3.04	197.29		
3	BRB 12	14	16								
2	BRB 12	21.375	16	29.42	20	20	40	2.45	133.00		
								Σ=	394.9	kips	
Weight BRB12		205.5									

			Cla	dding\	Weight a	at Exterior	Wall				
	Exterior	Height, ft	Trib Height, ft		Area (ft²)	Cladding	Line load olf	Weight	Weight (kins)		
Tower Roof	Lincarre.					110, p.1	ioaa pii	(1),1)	(((1)))		
Upper Roof		8.63									
Lower Roof	772	25.50	21.38		34574	10	213.75	4.77	165.02		
4	1002	28.00	26.75		64957	10	267.50	4.13	268.04		
3											
2	1002	21.38	24.69		54348	10	246.88	4.55	247.37		
Cladding is EIF:	Cladding is EIFS; assume 10psf 680.42										

Indoor Pool at :	2nd Floor		water	62.4	pcf
				Weigh	t, kips
Lineal feet of 1	2" side wal	Ι	237.84		
Pool depth			6.418	229	
area surface			2445		
lepth assumed			6.168	941	
				1170	kips
Outdoor Pool a	t Fourth Flo	oor			
				Weigh	it, kips
Lineal feet of 1	2" side wal	Ι	265		
Pool depth			7	278.3	
area surface			4060		
lepth assumed			6.75	1710	
				1988	kips

Flat Load Tables

	Seismic	Dead	A
Γ	weight	Load	Area Tower
TOWER ROOF	psf	psf	Remarks
Roofing	5.0	5.0	
Waterproofing / insulation	5.0	5.0	
3" Deck no fill type C	72.5	72.5	from Verco W3 Formlok tables
MEP	10.0	10.0	MEP, screens, Penthouse
Lighting and misc.	4.0	4.0	Lay-in ceiling or exposed structure
Beams/ girders	22.9	22.9	Steel beams, girders
Columns W10X54 X 58.83 FT	0.0	0.0	Steel Col
BRB	0.0	0.0	BRB assume BRB 12 for all
Cladding	0.0	0.0	
Partitions	5.0	0.0	
Total	124.4	119.4	

UPPER ROOF assumed to have similar values to the LOWER ROOF.

	Seismic Weight	Dead Load	
LOWER ROOF	psf	psf	Remarks
Roofing	5.0	5.0	
Waterproofing / insulation	5.0	5.0	allowance,
3" Deck with 4.5" NWC fill	63.3	63.3	from Verco W3 Formlok tables
MEP	5.0	5.0	MEP hung from underside of floor slab
Ceiling, lighting and misc.	4.0	4.0	Lay-in ceiling or exposed structure
Beams/ girders	22.9	22.9	Steel beams, girders
Columns	3.1	3.1	Steel Col
BRB	1.9	1.9	BRB assume BRB 12 for all
Cladding	4.8	4.8	
Partitions	5.0	0.0	
Total	114.9	109.9	

	Seismic Weight	Dead Load	
4th FLOOR	psf	psf	Remarks
Flooring	5.0	5.0	allowance,
3" Deck with 3.25" NWC fill	75.4	75.4	from Verco W3 Formlok tables
MEP	5.0	5.0	MEP hung from underside of floor slab
Ceiling, lighting and misc.	4.0	4.0	Lay-in ceiling or exposed structure
Beams/ girders	22.9	22.9	Steel beams, girders
Columns	4.8	4.8	Steel Col
BRB	3.0	3.0	BRB assume BRB 12 for all
Cladding	4.1	4.1	
Partitions	10.0	10.0	
Total	134.3	134.3	

Add Outdoor Pool side walls + water 1170.0 kips

3rd FLOOR is assumed similar value to 4th FLOOR.

	Seismic Weight	Dead Load	
2nd FLOOR	psf	psf	Remarks
Flooring	5.0	5.0	allowance, no arch dwgs
3" Deck with 4.5" NWC fill	75.4	75.4	from Verco W3 Formlok tables
MEP	5.0	5.0	MEP hung from underside of floor slab
Ceiling, lighting and misc.	4.0	4.0	Lay-in ceiling or exposed structure
Beams/ girders	22.9	22.9	Steel beams, girders
Columns	7.8	7.8	Steel Col
BRB	2.4	2.4	BRB assume BRB 12 for all
Cladding	4.6	4.6	
Partitions	10.0	10.0	
Total	137.1	137.1	

Add Indoor Pool side walls + water

1988.3 kips

Story Weight

				Added		
tory		Area		Pool	Weight,	
leight, ft	Height, ft	(ft^2)	Weight, psf	weight,	kips	
						ignore, braced
58.83	142.33		0.00		0.0	independently
						combine with
8.625	83.5				0.0	lower roof
25.5	74.875	34574	114.89		3972.2	
14	49.375	64957	134.29	1170.01	9893.1	
						combine with
14	35.375	0	0.00		0.0	4th floor
21.375	21.375	54348	137.10	1988.32	9439.4	
		153879				
					23304.8	
	tory eight, ft 58.83 8.625 25.5 14 14 21.375	tory Height, ft eight, ft Height, ft 58.83 142.33 58.625 83.5 25.5 74.875 14 49.375 14 35.375 21.375 21.375	tory Height, ft Area (ft*2) 58.83 142.33	Area (ft^2) Area (ft^2) Weight, psf 58.83 142.33	Area eight, ft Area Height, ft Pool weight, psf 58.83 142.33	Area eight, ft Area Height, ft Pool (ft^2) Weight, psf Pool weight, weight, Weight, kips 58.83 142.33

Period

C _t =	0.02						
h _n (ft)=	75.00						
B=	0.75						
T=	0.51	sec					
Notes:							
1- The per	riod calcula	ited per AS	SCE 41-17 E	quation 4-	4.		
$T = C_t \cdot h_n^{l}$	B						
2- Ct and E	 Bare for "a	ll other fra	aming syste	em" per AS	CE 41-17 S	ection 4.4.2	2.4.
3- The bui	Iding heig	nt is taken	from the 1	st floor to	the base o	f the high r	oof.

Seismic Hazard

William J. Rutter Center, 1675 Owens St, San Francisco, CA 94158, USA

Latitude, Longitude: 37.7680799, -122.393011

-Gene-Friend-Way		
ChargePoint harging Station Gladstone Ins Google	Community Center Garage CSF International sudents & Scholars Mission Bay Conference Center	er at osion Bay Koret Quad brary Map data ©2020 Google
Date		3/2/2020, 11:26:28 AM
Design Code Reference Docur	nent	ASCE41-17
Custom Probability		
Site Class		E - Soft Clay Soil
Туре	Description	Value
Hazard Level		BSE-2E
SS	spectral response (0.2 s)	1.38
S1	spectral response (1.0 s)	0.532
S _{XS}	site-modified spectral response (0.2 s)	1.794
S _{X1}	site-modified spectral response (1.0 s)	2.236
fa	site amplification factor (0.2 s)	1.3

See also Table 1 from John Egan.

Seismic Force Distribution

ATC Horizontal Response Spe	ctrum Seismi	c Parameters		Table 4-7	. Modificatio	on Factor, C			
Hazard Level	BSE-2E						Numbe	r of Storie	es
Site Class		E	- Building Type ^a			2	2	~4	
S _{xs} =	1.794	g	(See Note 2)	Building Type"		2	3	24
S _{x1} =	2.236	g	(See Note 2)	Wood and shear v	d cold-formed	d steel 1.3 a. W2.	3 1.1	1.0	1.0
		_		CFS1)	(11)				
 T=	0.51	s		PC2a)	rame (S1, S	3, C1,			
Sa=	1.794	g		Shear wa	II (S4, S5, C	2, C3, 1.4	1.2	1.1	1.0
W=	23,305	- kips		PC1a, Braced fr	PC2, RM2, l ame (S2)	JRMa)			
		Per ASCE 41-17		Cold-form	ed steel stra	p-brace			
C=	1.1	Table 4-7		wall (C	FS2)				
				Flexible d	iaphragms ((UHM) 1.0 S1a,	0 1.0	1.0	1.0
V=	45,990	kips		S2a, S	S2a, S5a, C2a, C3a, PC1,				
				a Defined	in Table 3-1	1.			
									_
k=	1.00		Per ASCE 41	-17 Section 4	I. 4. 2. 2, K =	= 1.0 for			
			periods less	than 0.5 sec	and K = 2	.0 for T			
			>2.5 sec. It v	aries linearl	y inbetwe	en 0.5 se			
Floor Levels	Story Height	Total Height, H	Weight, W	W x H ^k	coeff	Fx	Story	Shear. V	,
	(ft)	(ft)	(kips)			(kips)	(kips)	-
Tower Roof	58.83	142.33	0	0					
Upper Roof	8.625	83.5							
Lower Roof	25.5	74.875	3,972	303,722	0.30	13,880	1	3,880	
4	28	49.375	9,893	497,811	0.49	22,750	3	6,631	
3			0	0	0.00	0	3	6,631	
2	21.375	21.375	9,439	204, 791	0.20	9,359	4	5,990	
						-			
	142.3		23,305	1,006,324	1	45,990			_
	142.3		23,305	1,006,324	1	45,990			
Notes:	142.3		23,305	1,006,324	1	45,990			
Notes: 1- Base of building is assume	142.3 ed to be at 1s	t floor.	23,305	1,006,324	1	45,990			
Notes: 1- Base of building is assume 2- S _{xs} and S _{x1} refer to the spe	142.3 ed to be at 1s ectral respon	t floor. se at 0.2s and 1.	23,305	1,006,324	1 oplying si	45,990 te amplif	ication	factors	
Notes: 1- Base of building is assume 2- S _{xs} and S _{x1} refer to the spe These values match S _{cs} and s	142.3 ed to be at 1s ectral respon S _{ca} for the bu	t floor. se at 0.2s and 1. ilding, per the t	23,305	1,006,324 /ely, after a roup 3 Builc	1 oplying si lings - Ass	45,990 te amplif	ication of Geo	factors	, al
Notes: 1- Base of building is assum 2- S _{xs} and S _{x1} refer to the spo These values match S _{cs} and 3- Per Section 4.4.2.3 in ASC	142.3 ed to be at 1s ectral respon S _{ct} for the bu E 41-17, the s	t floor. se at 0.2s and 1. ilding, per the t pectral accelera	23,305 0s, respectiv able UCSF G	1,006,324 vely, after a roup 3 Builc omputed as	1 oplying si lings - Ass the least	45,990 te amplif sessment	ication of Geo S _{X1} /T, a	factors. itechnic and S _{xs} .	al
Notes: 1- Base of building is assum 2- S _{xs} and S _{x1} refer to the spo These values match S _{cs} and 3- Per Section 4.4.2.3 in ASC 4- Modification Factor, C, pe	142.3 ed to be at 1s ectral respon S _{c1} for the bu E 41-17, the s or ASCE 41-17,	t floor. se at 0.2s and 1. ilding, per the t pectral accelera Table 4-7.	23,305 0s, respectiv able UCSF G ation, Sa, is c	1,006,324 vely, after a roup 3 Builc omputed as	1 oplying si lings - Ass the least	45,990 te amplif sessment : value of	ication of Geo S _{x1} /T, a	factors itechnic and S _{xs} .	al

Repeat using ASCE 7-05 for co	omparison						
W=	23,305	kips					
C=	0.1406	Per ASCE 7-05					
rho	1.0						
V=	3,277	kips					
k=	1.00		Per ASCE 41-	17 Section 4	4.4.2.2, K =	1.0 for	
			periods less	than 0.5 sec	and K = 2.	0 for T	
Floor Levels	Story Height	Total Height, H	Weight, W	W x H ^k	coeff	Fx	Story Shear, V
Floor Levels	Story Height (ft)	Total Height, H (ft)	Weight, W (kips)	W x H ^k	coeff	Fx (kips)	Story Shear, V (kips)
Floor Levels Tower Roof	Story Height (ft) 58.83	Total Height, H (ft) 142.33	Weight, W (kips) 0.00	₩ x H ^k 0.00	coeff 0.00	Fx (kips) 0.00	Story Shear, V (kips) 0.00
Floor Levels Tower Roof Upper Roof	Story Height (ft) 58.83 8.625	Total Height, H (ft) 142.33 83.5	Weight, W (kips) 0.00 0.00	₩×H ^k 0.00 0.00	coeff 0.00 0.00	Fx (kips) 0.00 0.00	Story Shear, V (kips) 0.00 0.00
Floor Levels Tower Roof Upper Roof Lower Roof	Story Height (ft) 58.83 8.625 25.5	Total Height, H (ft) 142.33 83.5 74.875	Weight, W (kips) 0.00 0.00 3972.24	WxH ^k 0.00 0.00 297421.67	coeff 0.00 0.00 0.30	Fx (kips) 0.00 0.00 983.89	Story Shear, V (kips) 0.00 0.00 983.89
Floor Levels Tower Roof Upper Roof Lower Roof 4	Story Height (ft) 58.83 8.625 25.5 28	Total Height, H (ft) 142.33 83.5 74.875 49.375	Weight, W (kips) 0.000 0.000 3972.24 9893.11	₩×H ^k 0.00 297421.67 488472.11	coeff 0.00 0.00 0.30 0.49	Fx (kips) 0.00 0.00 983.89 1615.89	Story Shear, V (kips) 0.00 0.00 983.89 2599.78
Floor Levels Tower Roof Upper Roof Lower Roof 4	Story Height (ft) 58.83 8.625 25.5 28 0	Total Height, H (ft) 142.33 83.5 74.875 49.375 0	Weight, W (kips) 0.000 0.000 3972.24 9893.11 0.000	₩xH ^k 0.00 297421.67 488472.11 0.00	coeff 0.00 0.00 0.30 0.49 0.00	Fx (kips) 0.00 0.00 983.89 1615.89 0.00	Story Shear, V (kips) 0.00 0.00 983.89 2599.78
Floor Levels Tower Roof Upper Roof Lower Roof 4 3	Story Height (ft) 58.83 8.625 25.5 28 0 21.375	Total Height, H (ft) 142.33 83.5 74.875 49.375 0 21.375	Weight, W (kips) 0.000 3972.24 9893.11 0.000 9439.43	₩×H ^k 0.00 297421.67 488472.11 0.00 204791.05	coeff 0.00 0.00 0.30 0.49 0.00 0.21	Fx (kips) 0.00 983.89 1615.89 0.00 677.46	Story Shear, V (kips) (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00 (0.00) (0
Floor Levels Tower Roof Upper Roof Lower Roof 4 3 2	Story Height (ft) 58.83 8.625 25.5 28 0 28 0 21.375	Total Height, H (ft) 142.33 83.5 74.875 49.375 0 21.375	Weight, W (kips) 0.00 3972.24 9893.11 0.00 9439.43	₩×H ^k 0.00 297421.67 488472.11 0.00 204791.05	coeff 0.00 0.30 0.49 0.00 0.21	Fx (kips) 0.00 983.89 1615.89 0.00 677.46	Story Shear, V (kips) 0.00 983.89 2599.78 3277.24

Note I=1.25, R=8, rho=1.0. Despite irregularities, we do not have easy way to check deflections but have not penalized design with rho factor since there are many frames in both directions.

Column Axial Force Tier 1 Check Story Weight

Floor Levels	Story Height, ft	Height, ft	Area (ft^2)	Weight, psf	Added Pool weight, kips	Weight, kips	
							ignore, braced
Tower Roof	58.83	142.33		0.00		0.0	independently
							combine with lower
Upper Roof	8.625	83.5				0.0	roof
Lower Roof	25.5	74.875	34574	114.89		3972.2	
4	14	49.375	64957	134.29	1170.01	9893.1	
							combine with 4th
3	14	35.375	0	0.00		0.0	floor
2	21.375	21.375	54348	137.10	1988.32	9439.4	
1			153879				
						23304.8	

 $A_{trib} := \frac{26.66ft \cdot 32ft}{1} = 853.12 \cdot ft^2$

$$w_5 := 0psf$$

 $F_y := 50ksi$

 $w_4 := 134.3 psf$

 $w_3 := 0psf$

 $w_2 := 137 psf$

$$F_{1st} := (w_{Lowroof} + w_5 + w_4 + w_3 + w_2) \cdot A_{trib} = 329.475 \cdot kip$$

Column at 4-H is C27 W14x311 A_{W14311} := 91.4in²

Axial_{stress} :=
$$\frac{F_{1st}}{A_{W14311}}$$
 = 3.605·ksi 0.1·F_y = 5·ksi

To check all interior columns choose the columns with smaller area and largest tributary area for the interior columns

+

$$F_{1stsmall} := (w_5 + w_4 + w_3 + w_2) \cdot A_{trib} = 231.451 \cdot kip$$

$$F_{inta} := F_{1stsmall} = 231.451 \cdot kip$$

$$A_{minint} := 46.7in^2$$

 $Axial_{stressint} := \frac{F_{inta}}{A_{minint}} = 4.956 \cdot ksi$ less than 5ksi ok

To check the exterior columns choose the columns with smaller area and the largest tributary area for the exterior colemns

$$F_{ext} := \frac{F_{1st}}{2} = 164.737 \cdot kip \qquad A_{minext} := 46.7in^2$$

$$Axial_{stressext} := \frac{F_{ext}}{A_{minext}} = 3.528 \cdot ksi \qquad less than 5ksi ok$$
All columns have Axial stress less than 0.1Fy
ALL other columns have smaller tributary and force

Note that check above was done using dead loads only.

If live loads are included, with a roof load of 20 psf, and conservative loads of 100 psf for the floors, and the ASCE 41-17 Section 7.2.2 assumption of $Q_L = 0.25 \times \text{total loads}$, then $Q_L = (0.25)$ (26.66 ft x 32 ft) (0.02 + 4 x 0.100) = 89.6 kips. For the interior column above, $Q_D + Q_L = (231.5 \text{ k} + 89.6 \text{ k}) = 321.1 \text{ k}$ and stress is then (321.1 k / 46.7 in²) = 6.9 ksi > 5 ksi.

Center of Gravity

Calculatior							
ltem	Lx	Ly	xcg	xcg ycg A		Area*xcg	Area*ycg
	ft	ft	ft	ft	ft^2	ft^3	ft^3
	Not used	Not used					
	area	area					
	calculated	calculated					
	using blue	using blue					
1	beam	beam	136	110.085	60470	8223920	6656840
2			258.17	196.5	0	0	0
3			248.08	157.08	0	0	0
4			157.08	90.46	-5179	-813517	-468492
5			157.08	17.25	-2756	-432912	-47541
6			262.33	7.33	-238	-62434.5	-1744.54
	0	0			52297	6915056	6139062

Xtotcg=	132.2266
Ytotcg=	117.3884

Total bldg area=	156891
total bldg weight=	20395.83
total bldg shear=	36590.12

Eccentricity and Brace Avg. Axial Stress Check

Brace Axial Stress Check

Per Section 4.4.3.4 in ASCE 41-17:

$$f_j^{\text{avg}} = \frac{1}{M_s} \left(\frac{V_j}{sN_{br}} \right) \left(\frac{L_{br}}{A_{br}} \right)$$
(4-9)

where

- L_{br} = Average length of the braces (ft);
- N_{br} = Number of braces in tension and compression if the braces are designed for compression, number of diagonal braces in tension if the braces are designed for tension only;

- s = Average span length of braced spans (ft); $A_{br} =$ Average area of a diagonal brace (in.²); $V_j =$ Maximum story shear at each level (kip); and $M_s =$ System modification factor; M_s shall be taken from Table 4-9.

Table 4-9. M_s Factors for Diagonal Braces

		Level of Performance		
Brace Type	d/t ^b	CP"	LS"	10ª
Tube ^b	<90/(F _{ye}) ^{1/2}	7.0	4.5	2.0
Pipe ^c	<1,500/Fye >6.000/Fue	7.0	4.5	2.0
Tension-only Cold-formed steel	20,000,1 yg	3.5 3.5	2.5 2.5	1.25
All others		7.0	4.5	2.0

Note: F_{ye} = 1.25F_y; expected yield stress.
 ^a CP = Collapse Prevention, LS = Life Safety, IO = Immediate Occupancy.
 ^b Depth-to-thickness ratio.
 ^c Interpolation to be used for tubes and pipes.

Since we did not have the brace areas we calculated the areas based on the capacity of the brace assuming Fy=39ksi

Ratio of diag	onal for	ces to h	orizont	al force	s for bra								
								Ratio	Ratio	Ratio	Ratio	Ratio	Ratio
	Ly	Lx	Lx	Lx	Lx	Lx	Lx	DIA/HORZ	DIA/HORZ	DIA/HORZ	DIA/HORZ	DIA/HORZ	DIA/HORZ
Upper roof	409	192	160	256	188	384	144	0.42	0.36	0.53	0.42	0.68	0.33
lower roof	306	192	160	256	188	384	144	0.53	0.46	0.64	0.52	0.78	0.43
4th	336	192	160	256	188	384	144	0.50	0.43	0.61	0.49	0.75	0.39
3rd	168	192						0.75					
2nd	253.5	192	160	254	288	384	144	0.60	0.53	0.71	0.75	0.83	0.49

o of dia

Center of Rigidity

X dir braced frames	Floor level	Fbrace from drawings (kip)	Fbrace from drawings (kip)	Fbrace from drawings (kip)	Total horizontal force (kip)	Distance from Origin (in) Dy	Fhorx*Dy
line A					0	2642	0
					0	2642	0
	4				0	2642	0
	2	500	400	400	645	2642	1704065
	1	600	500	500	966	2642	2552282
Line D					0	1490	0
					0	1490	0
	4	400	400		340	1490	506547
	2	500	5 0 0	400	668	1490	995514
	1	600	600	500	991	1490	1477213
Line E					0	1236	0
					0	1236	0
	4	300			149	1236	183968
	2	400			301	1236	372074
	1	700			423	1236	522379
Line G					0	564	0
					0	564	0
	4	300			149	564	83947
	2	400			301	564	169781
	1	800			483	564	272420
Line G.8					0	228	0
					0	228	0
	4				0	228	0
	2	1200			903	228	205905
	1	800	800		966	228	220254

Y dir braced frames	Floor level	Fbrace from drawings	Fbrace from drawings	Fbrace from drawings	Total horizontal force (kin)	Distance from Origin (in) Dx	Fhorx*Dx
line 1		(קיא)	(אוץ)	(кір)		3264	0
					0	3264	0
	4				0	3264	0
	2	300	300		452	3264	1473846
	1	200	500	500	771	3264	2515489
Line 3					0	2616	0
					0	2616	0
	4	400			213	2616	556152
	2	400			301	2616	787496
	1	200			167	2616	436636
Line 4					0	2368	0
					0	2368	0
	4	300			149	2368	352451
	2	300			226	2368	534621
	1	400			198	2368	467834
Line 5					0	2112	0
					0	2112	0
	4				0	2112	0
	2	400	400		397	2112	838276
	1	600	600		725	2112	1530187
Line 7					0	1408	0
					0	1408	0
	4	400			313	1408	440443
	2	700			527	1408	741719
	1	700			584	1408	822509
Line 8					0	1152	0
					0	1152	0
	4				0	1152	0
	2	400			198	1152	228621
	1	600			362	1152	417324
Line 11					0	0	0
					0	0	0
	4		300	300	350	0	0
	2	700	400	400	785	0	0
	1	800	450	450	1139	0	0

CG from CG calc page

Xtotcg=	132.2266	
Ytotcg=	117.3884	
	(ft)	20% (ft)
Bldg length=	272	54.4
Bldg width=	220.17	44.034

Floor level	Yrig (in)				
4	1214.58	101.21	62.00	39.21	
2	1223.22	101.94	117.39	15.45	
1	1317.43	109.79	117.39	7.60	<mark>no more than 20%</mark>
Floor loval	Vrig (in)				
Floor level	rng (in)				
	1014 50	101 21	62.00	20.21	
4	1214.58	101.21	62.00	59.21	
2	1223.22	101.94	117.39	15.45	
1	1317.43	109.79	117.39	7.60	no more than 20 <mark>%</mark>

Brace Average Axial Stress

X DIRECTION	J	Fy=	38		
	Sum of all	Sum of all			
	brace	brace			
	capacity	capacity	sum Area of		
	forces	forces*	braces	Demand	ASCE 7-05
Floor level	(kip)	MS=7 (kip)	(in^2)	(kip) BSE-2E	Demand
4	637.64	4463.47	117.46	13880.28	983.89
2	2818.25	19727.72	519.15	36630.57	2599.78
1	3829.10	26803.67	705.36	45989.66	3277.24

Y DIRECTION					
	Sum of all	Sum of all			
	brace	brace			
	capacity	capacity	sum Area		
	forces	forces*	of braces	Demand	ASCE 7-05
Floor level	(kip)	MS=7 (kip)	(in^2)	(kip) BSE-2E	Demand
4	1023.80	7166.62	188.60	13880.28	983.89
2	2885.55	20198.85	531.55	36630.57	2599.78
1	3945.43	27618.02	726.79	45989.66	3277.24

Ratios to co							
Existing New							
1.794	7	0.256	1.000	1.95	7	0.279	1.087
0.974	4.5	0.216	0.845	1.3	4.5	0.289	1.127

Calculation of stress	demand for	braces
-----------------------	------------	--------

X direction (N-S)											
Tier 1 Capacit	y	Fy	38	0.5Fy	19	34.2					
					ASCE 41-17	ASCE 7-05					
	BSE-2E	BSE-1E	BSE-2N	BSE-1N	DCR	DCR					
						includes					
	KSI				BSE-2E/	rho=1.0,					
Floor level	DEMAND	KSI DEMAND	KSI DEMAND	KSI DEMAND	0.5Fy	I=1.25					
4	118.17	99.80	128.45	133.20	6.22	1.71					
2	70.56	59.59	76.69	79.53	3.71	1.02					
1	65.20	55.06	70.87	73.49	3.43	0.95					

Y direction (E-W)												
Fy 38 0.5Fy 19												
					ASCE 41-17	ASCE 7-05						
	BSE-2E	BSE-1E	BSE-2N	BSE-1N	DCR	DCR						
						includes						
	KSI	KSI	KSI		BSE-2E/	rho=1.0,						
Floor level	DEMAND	DEMAND	DEMAND	KSI DEMAND	0.5Fy	l=1.25						
4	73.60	62.16	80.00	82.96	3.87	1.07						
2	68.91	58.20	74.91	77.68	3.63	1.00						
1	63.28	53.44	68.78	71.33	3.33	0.92						

Notes:

- 1. Check done for ASCE 41-17 and repeated using same method for forces from ASCE 7-05. See Appendix E for more detailed check per ASCE 7-05.
- 2. The BSE-2N and BSE-1N columns are provided for comparison only. The BSE-1N ratios are larger than the BSE-2N ratios because of the ratio of demand and the Ms factor used at each level. The BSE-2E values are used as the starting reference point. For example, for Story 1, the BSE-2E stress in the X-direction is 65.20 ksi. The BSE-2N stress is (BSE-2E = 65.20 ksi) x (BSE-2N Sxs = 1.95 / CP Ms = 7) / (BSE-2E Sxs = 1.794 / CP Ms = 7) = 70.87. The BSE-1N stress is (BSE-2E = 65.20ksi) x (BSE-1N Sxs = 1.30 / CP Ms = 4.5) / (BSE-2E Sxs = 1.794 / CP Ms = 7) = 73.47 ksi.
- 3. This is a highly irregular building with intermediate floors, large diaphragm openings, offset floors, discontinuous braced bays, etc. This Tier 1 analysis has simplified the floor levels and lumped weights. An analysis using a SAP or ETABS model would provide a better understanding of the force distribution and building behavior. See Appendix F for a comparison using the original calculations.

APPENDIX E

Sample Calculations Per ASCE 7-05

Design Horizontal Response Spectrum

Seismic Hazard per ASCE 7-05

ATC Hazards by Location

Search Information

Coordinates:	37.768122169980366, -122.39310076635075
Elevation:	13 ft
Timestamp:	2020-03-09T23:43:43.725Z
Hazard Type:	Seismic
Reference Document:	ASCE7-05
Risk Category:	Ш
Site Class:	E

MCER Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
Ss	1.5	MCE _R ground motion (period=0.2s)
S1	0.634	MCE _R ground motion (period=1.0s)
S _{MS}	1.35	Site-modified spectral acceleration value
S _{M1}	1.521	Site-modified spectral acceleration value
S _{DS}	0.9	Numeric seismic design value at 0.2s SA
S _{D1}	1.014	Numeric seismic design value at 1.0s SA

Additional Information

Name Value Description

SDC	D	Seismic design category
Fa	0.9	Site amplification factor at 0.2s
Fv	2.4	Site amplification factor at 1.0s

T_L 12 Long-period transition period (s)

ASCE-7-05	Comparison	
∨=Cs W		
SDS	0.9	
SD1	1.014	
S1	0.634	
R	8	Table 12.2-1(25)
I	1.25	
Т	0.55	sec
Cs	SDS/(R/I)	12.8-2
	0.140625	
Csmax	SD1/(T(R/I))	12.8.3
	0.285508157	
Csmin	0.5S1/(R/I)	12.8.4
	0.04953125	
Cs	0.140625	

Note that this is essentially the same as the original design for V=0.14W

Check BRB Chevron Brace at Line D-9 to D-10

ASCE 7-05 Check of Beam in Chevron Braced Bay

See pdf of spreadsheet below

SINGLE BAY BRBF DESIGN - CHEVRON

BRBF LOCATION	Line D - 9-10				
	1				
deneral Design Parameters:		C	5	0-	1
ψ_b (lexue)-	0.9		1 25	0=	25
ېر (sincur)- مر (compression)=	0.9	ი (weld)=	0.75	Spc=	0.9
φε (compression) φ _e (brace)=	0.9	φ _w (weid) φ _w (tension)=	0.75	505 F=	29000 ksi
φ ₀ (σ. α.c.)	0.5	φ[(tension)	0.5	-	
BRBF GEOMETRY:	Level 2	Level 4	Upper roof		
L(ft)=	32.00	32.00	32.00		Bay Width (Columns C-C)
hi(ft)	21.38	28.00	25.63		Story Height
L _{diag} (ft)=	26.70	32.25	30.21		Work Point - Work Point
costili	0 500	0.406	0 5 2 0		III - angle between brace and berizontal axis
sin=4	0.801	0.490	0.330		
	0.001	0.000			
BRACE DESIGN:]				
AISC 341-05 Section 16.2 -Brace Strength					
F (13)	12-E-F.3	12-E-F.3	12-E-F.3		Brace ID Minimum viold stross of the steel sere
F _{ysc} (KSI)	38	38	38		Maximum yield stress of the steel core
Fymax (ksi	40	40	46 E 0		
Steel Cole Alea (III2)	0.0	7.5	5.0		
AISC 341-05 Section 16.2d -Adjusted Brace Street	ngth				
ω=	1.25	1.25	1.25		Strain Hardening Adjustment Factor (Assumed)
ß=	1.35	1.35	1.35		Compression Adjustment Factor (Assumed)
βω=	1.688	1.688	1.688		
ωF _{ymax} Asc	506	420	334		Adjusted Brace Strength in Tension
βωF _{ymax} A _{sc} =	683	567	450		Adjusted Brace Strength in Compression
	-				
Beam Design					
Beam Demands	12-E-F.3	12-E-F.3	12-E-F.3		Brace ID Axial load due to sum of adi braces (tension
					and compresion) use 0.6 of horizontal force for
P _{Emh} (kip)=	428	269	228		compression
					Vertical unbalanced force due to adj. brace
P _y (kip)=	142	128	99		strength
M _{Emh} (kip-ft)	1134	1020	792		V _{emh} *L/4
V _e (kin)	71	64	50		Seismic shear due to adjacent brace strength
V (kip)	8	15	15		Factored gravity shear from analysis
V., (kin)=	79	79	65		V+Vt
- u (······)		,,,	00		· ug · enni
Beam Geometric Properties					
F _y (ksi)=	50	50	50		
Beam Size=	W24x162	W27x146	W33x130		
A _g (in ²)=	47.8	43.2	38.3		
t _f (in)=	1.22	0.975	0.855		
t _w (in)=		0.605	0.58		
17: 1	0.705	0.005			
a (in)=	0.705	27.4	33.1		
a (in)= b _f (in)=	0.705 25 13	27.4 14	33.1 11.5		
a (in)= b _f (in)= S _x (in ³ ,	0.705 25 13 414	27.4 14 414	33.1 11.5 406		
a (in)= b _f (in)= S _x (in ^{3,} Z _x (in ^{3,}	0.705 25 13 414 468	27.4 14 414 464	33.1 11.5 406 467		
a (in)= b _f (in)= S _x (in ³ , Z _x (in ³ , r _y (in)=	0.705 25 13 414 468 10.4	27.4 14 414 464 11.5	33.1 11.5 406 467 13.2		
a (in)= b _f (in)= S _x (in ³ , Z _x (in ³ , r _y (in)= r _x (in)=	0.705 25 13 414 468 10.4 3.05	27.4 14 414 464 11.5 3.2	33.1 11.5 406 467 13.2 2.39		
a (in)= b _f (in)= S _x (in ³ , Z _x (in ³ , r _y (in)= r _x (in)= r _t (in)=	0.705 25 13 414 468 10.4 3.05 3.57	27.4 14 414 464 11.5 3.2 3.76	33.1 11.5 406 467 13.2 2.39 2.94		

J (in ⁴)=	18.5	11.3	7.37	
C=	1	1	1	
Seismic Compactness Per AISC 341-05	Section 16.5a	a/8.2b		
Beam Compact Flange b _f /2t _f =	5.3	7.2	6.7	
$(b/2t)_{max}=0.3(E/F_y)^{0.5}=$	7.2	7.2	7.2	
$b_f/2t_f \le (b/2t)_{max} =$	Beam OK	Beam OK	Beam OK	
Beam Compact Web (d-2t _f)/t _w =	32.0	42.1	54.1	
$Ca = P_u / \phi P_v =$	0.20	0.14	0.13	
2.45 $(E/F_v)^{0.5}$ (1-0.93)C _a =	48.1	51.4	51.7	if C _a ≤ 0.125
$0.77 (E/F_{\nu})0.5 (2.93-C_{\nu})=$	50.6	51.8	51.9	if C ₂ > 0.125
1.49 (F/E.) ^{0.5} =	35.9	35.9	35.9	if $C_{r} > 0.125$ (min. limit)
(h/t)	50.6	51.8	51.9	
(d-2t ₆)/t< (h/t)	Beam OK	Beam OK	REVISE	
	Deam OK	DeamOK	IL VIJE	
AISC 360-05 Section D2 - Tension				
φP _{nt} (kip)=	2151	1944	1724	AISC 360 Equation D2-1
DCR=	0.20	0.14	0.13	
	Beam OK	Beam OK	Beam OK	
AISC 360-05 Section E - Compression				
L, (ft)=	15	15	15	Strong axis unbraced length
L, (ft)=	15	15	15	Weak axis unbraced length
, v, k=	1.0	1.0	1.0	
(kl /r).=	17 3	15.7	13.6	
((C) /) _x	0.5	0.5	0.5	
(kj /r) -	20.5	29.1	27.7	
$(K_{i})_{y}$	29.5	20.1	201.04	AISC 360-05 Equaltion E3-4
$\Gamma_{e}(RSI) - E_{e}(RSI) - E_{$	16.0	17.2	201.04 /E 1	AISC 360-05 Equaltion E3-2 or E3-3
$F_{cr}(KSI) = \Phi P_{cr}(KSI) = \Phi$	2019	47.2	45.1	AISC 360-05 Equaltion E3-1
Ψ _c r _{nc} (λιμ)-	2018	1655	0.15	Also solo os Equation Es 1
Den-	Beam OK	Beam OK	Beam OK	
AISC 360-05 Section F - Flexure				
L _p (ft)=	10.8	11.3	8.4	AISC 360-05 Equation F2-5
L _r (ft)=	35.8	33.3	24.2	AISC 360-05 Equation F2-6
C _b =	1	1	1	
$S_x (in^3) =$	414	414	406	
M _p (kip-ft)=	1950	1933	1946	Z _x F _y
M _n (kip-ft)=	1824	1812	1630	AISC 360-05 Equation F2-2
φM _n (kip-ft)=	1642	1630	1467	
DCR	0.69	0.63	0.54	
	Beam OK	Beam OK	Beam OK	
AISC 360-05 Section H1 - Combined Co	ompression &	Flexure		
P _u (kip)=	428	269	228	
M ₁₁ (kip-ft)=	1134	1020	792	
$P_{\rm u}/\Phi_{\rm c}P_{\rm nc}=$	0.21	0.15	0.15	
combined equation=	0.83	0.70	0.61	AISC 360-05 Equation H1-1a or H1-1
, **	Beam OK	Beam OK	Beam OK	
AISC 360-05 Section H1 - Combined Te	Insion & Flexu	<u>116</u> 260	220	
$P_{u}(K p) =$	42ð	209	22ð 700	
IVI _u (кір-ті)=	1134	1020	792	
$P_{u}/\Phi t P_{nt} =$	0.20	0.14	0.13	AISC 260 AE Equation 114 to 114
combined equation=	U./9 Beam OK	0.70 Beam OK	U.DI Beam OK	AISC SOU-US EQUALION HI-18 OF HI-
	Dearrion	Dearn OK	Dealli OK	

AISC 360-05 Section G2 - Shear

φ _v V _n (kip)=	429	416	492	AISC 360-05 Equation G2-1
DCR	0.18	0.19	0.13	
	Beam OK	Beam OK	Beam OK	

ASCE 7-05 Check Connection in Chevron Braced Bay

BRB brace connection check

	Adjusted Brace strenght						Bolt Shear						
BRB Size, A _{sc}	Fy _{max}	ω	β	βω	T _{max}	P _{max}	n _{bolts/leg}	n _{legs}	n _{bolts}	φV _{bolt}	φV _n	Vu	DCR
(in2)	(ksi				(kip)	(kip)				(kip)	(kip)	(kip)	
8.1	46	1.25	1.35	1.688	466	629	2	4	8	80.7	646	629	0.97
11.8	46	1.25	1.35	1.688	679	916	2	4	8	80.7	646	916	1.42
9.5	46	1.25	1.35	1.688	546	737	3	4	12	80.7	968	737	0.76
11.8	46	1.25	1.35	1.688	679	916	3	4	12	80.7	968	916	0.95
13.2	46	1.25	1.35	1.688	759	1025	4	4	16	80.7	1291	1025	0.79

	Gusset Plate Yield						Splice Plate yield							
BRB Size, A _{sc}	t _{GP}	L	b _{Whitmore}	Fy _{GP}	φT _n	Tu	DCR	t _{SP}	b _{SP}	Fy _{SP}	n _{sp}	φTn	Tu	DCR
(in ²)	(in)	(in)	(in)	(ksi)	(kip)	(kip)		(in)	(in)	(ksi)		(kip)	(kip)	
8.1	1	8	16.6	50	830	629	0.76	1	4	50	8	1600	629	0.39
11.8	1.25	8	16.6	50	1038	916	0.88	1	4	50	8	1600	916	0.57
9.5	1.25	12	18.9	50	1181	737	0.62	1	4	50	8	1600	737	0.46
11.8	1.25	12	18.9	50	1181	916	0.78	1	4	50	8	1600	916	0.57
13.2	1.25	16	21.2	50	1325	1025	0.77	1	4	50	8	1600	1025	0.64

	Wing Plate	Welds				
BRB Size, A _{sc}	W1	L1	n _{welds}	φV _n	Tu	DCR
(in ²)	(in)	(in)		(kip)	(kip)	
8.1	0.375	10	4	334	314	0.94
11.8	0.375	10	4	334	458	1.37
9.5	0.375	14	4	468	369	0.79
11.8	0.375	14	4	468	458	0.98
13.2	0.375	18	4	601	512	0.85

Notes:

1.Gusset plate buckling ok by inspection

2. Gusset plate blok shear is not applicable

3.Gusset plate to column/base plate welds not checked for Tier 1 analysis

APPENDIX F

Comparison of F/E and R+C Tier 1 calcs

Weight Take-Off Comparison R+C Based on 2002 Bid Set and F/E Original Nov 2000 Calculations Story Weight

Floor Levels	Story Height, ft	Height, ft	Area (ft^2)	Weight, psf	Added Pool weight, kips	Weight, kips	
							ignore, braced
Tower Roof	58.83	142.33		0.00		0.0	independently
							combine with lower
Upper Roof	8.625	83.5				0.0	roof
Lower Roof	25.5	74.875	34574	114.89		3972.2	
4	14	49.375	64957	134.29	1170.01	9893.1	
							combine with 4th
3	14	35.375	0	0.00		0.0	floor
2	21.375	21.375	54348	137.10	1988.32	9439.4	
1			153879				
						23304.8	

Comparison with Story Weights used in Forell Elsesser Calculations dated Nov 2000 with R+C weight take-off

			R+C	
		F/E Weights	Lumped	
	F/E Weight,	lumped,	Weights,	
Level	kips	kips	kips	Ratio FE/R+C
T85	916			
T75	2235	3151	3972	0.79
4	8848	10144	9893	1.03
3	1296			
2	7557	7557	9439	0.80
Sum	20852	20852	23305	0.89

combine with lower roof

combine with 4th floor

Brace Forces from SAP2000 Elastic Analysis in F/E Calculations from November 2000

Appears target DCR was <=0.8. Some sizes apparently increased after this run.

Note F/E SAP2000 Nov 2000 analysis done with V=0.14W including R=6.4 rho=1.15 I=1.0

ASCE 7-05 Simplified BRB analysis by R+C for comparison V=0.14W R=8 rho=1.0 I=1.25 Simplified scaling of R+C results using ratios of FE/ R+C weights and another 0.8 reduction to

account for average F/E brace forces compared to yield forces used in R+C calculations.

Calculation o	of stress de	mand for bra	ces								
X direction (N	X direction (N-S)										
Tier 1 Capacity	y	Fy	38	0.5Fy	19	34.2					
					ASCE 41-17	ASCE 7-05					
	BSE-2E	BSE-1E	BSE-2N	BSE-1N	DCR	DCR					
includes											
	KSI BSE-2E/ rho=1.0,										
Floor level	DEMAND	KSI DEMAND	KSI DEMAND	KSI DEMAND	0.5Fy	I=1.25					
4	6.22	1.71									
2	70.56	79.53	3.71	1.02							
1	65.20	55.06	70.87	73.49	3.43	0.95					

X direction (N-S)					
					ASCE 7-05
				ASCE 41-17	DCR
				DCR	multiplied
				multiplied by	by 0.8 to
				0.8 to account	account for
				for the ratio	the ratio of
				of forces	forces
		ASCE 41-17	ASCE 7-05	obtained in	obtained in
		DCR	DCR	F/E analysis	F/E analysis
			includes		
		BSE-2E/	rho=1.0,		
	Ratio FE/R+C	0.5Fy	I=1.25	-	
	0.00	5.50	1.52	4.45	1.22
DCRS Scaled by FE/R+C weight ratio overall	0.89	5.56	1.53	4.45	1.23
	0.89	3.32	0.92	2.66	0.73
	0.89	3.07	0.85	2.46	0.68
DCRs Scaled by FE/R+C weight ratio by story	0.79	4.93	1.36	3.95	1.09
	1.03	3.81	1.05	3.05	0.84
	0.80	2.75	0.76	2.20	0.61

_

Y direction (E-W)										
		Fy	38	0.5Fy	19	34.2				
					ASCE 41-17					
	BSE-2E	BSE-1E	BSE-2N	BSE-1N	DCR	ASCE 7-05 DCR				
	KSI		KSI	KSI		includes				
Floor level	DEMAND	KSI DEMAND	DEMAND	DEMAND	BSE-2E/ 0.5Fy	rho=1.0, l=1.25				
4	73.60	62.16	80.00	82.96	3.87	1.07				
2	68.91	58.20	74.91	77.68	3.63	1.00				
1	63.28	53.44	68.78	71.33	3.33	0.92				

Y direction (E-W)					
				ASCE 41-17 DCR multiplied by 0.8 to account for the ratio of forces	ASCE 7-05 DCR multiplied by 0.8 to account for the ratio of
		ASCE 41-17	ASCE 7-05	obtained in	forces obtained
		DCR	DCR	F/E analysis	in F/E analysis
			includes		
		BSE-2E/	rho=1.0,		
	Ratio FE/R+C	0.5Fy	l=1.25		
	0.89	3.47	0.96	2.77	0.76
	0.89	3.25	0.90	2.60	0.72
	0.89	2.98	0.83	2.38	0.66
	0.79	3.07	0.85	2.46	0.68
	1.03	3.72	1.03	2.98	0.82
	0.80	2.67	0.74	2.13	0.59

FORELL / ELSESSER ENGINEERS, INC.

Structural Engineers 160 PINE ST., 6TH FLOOR SAN FRANCISCO, CA 94111

JOB NO. 9932 DATE 7/25/00 BY DY SHEET NO. 2 -4 Ju UCSF MISSION BAY (415) 837-0700 FAX (415) 837-0800 COMMUNITY CENTER

SEISMIC ANALYSIS: EAST-WEST DIRECTION BRACE AXIAL FORCES (1st Iteration)

				Madagatel	Madiant		(note 1)			(note 1)	
Brace				Projected	Vertical	Braco	Max.	Braco		Horiz.	Deliability/Deducatesey
Member		Grid	Location	Brace	Brace	Member	Axial	Yield	D/C	Demand	Factor, o
Number	Elevation	Line	Line	Length (ft)	Height (ft)	Length (ft)	Force (k)	Force (k)	Ratio	(k)	i ucioi, p
411020	0	1	В	32	22	38.8	157	200	0.79	130	
411060	0	1	F	16.0	22	27.2	214	250	0.86	126	
411065	0	1	F.5	16.0	22	27.2	212	250	0.85	125	
411070	0	1	G	16.0	22	27.2	213	250	0.85	125	
411075	0	1	G.5	16.0	22	27.2	216	250	0.86	127	
413020	0	3	B	32	22	38.8	157	200	0.00	127	
414050	0	4	F	12.0	22	25.1	149	200	0.75	71	
414055	0	4	E 5	12.0	22	25.1	140	200	0.74	71	
415010	0	4	E.5	12.0	22	25.1	140	200	0.74	/1	\sim
415010	0	5	A 6	10	22	27.2	232	300	0.77	137	
415015	0	5	A.5	16	22	27.2	231	300	0.77	136	+ TRY 450)
415020	0	5	В	16	22	27.2	233	300	0.78	137	111490
415025	0	5	B.5	16	22	27.2	245	300	0.82	144	
417060	0		F	32.0	22	38.8	274	350	0.78	226	
417070	0	7	G	28.0	22	35.6	278	350	0.79	219	$\rho = 2-(20/(rmax*sqrt(Ab)))$
418010	0	8	A	16	22	27.2	243	300	0.81	143	
418015	0	8	A.5	16	22	27.2	242	300	0.81	142	Story Shear (El. 0) = 2908 kips
419930	0	11	С	16	22	27.2	343	400	0.86	202	Ab = 49950 sq. ft.
419935	0	11	C.5	16	22	27.2	337	400	0.84	198	max (ri) = 278.5
419940	0	11	D	21.2	22	30.5	353	(400 2	0.88	245	rmax = max(ri)/story shear 0.096
419950	0	11	E	24.0	22	32.6	378	(400)	0.94	278	ρ = 1.065
421060	22	1	F	16.0	14	21.3	178	(200)	0.89	134	
421065	22	1	F.5	16.0	14	21.3	177	(200)	0.88	133	(TRY 250K)
421070	22	1	G	16.0	14	21.3	176	200	0.88	133	Aut
421075	22	1	G.5	16.0	14	21.3	177	200 5	0.89	133 /	CHECK MAX D/C RATIO TO
424050	22	4	E	12.0	14	18.4	151	200	0.76	98	SATISFY max $\rho = 1.148$
424055	22	4	E.5	12.0	14	18.4	151	200	0.76	98	=> D/C < 1/0 = 0.87
425010	22	5	A	16	28	32.2	169	200	0.84	84	
425015	22	5	A 5	16	28	32.2	166	200	0.83	83	
425020	22	5	B	16	28	32.2	156	200	0.03	79	
425020	22	5	D.6	16	20	32.2	130	200	0.70	70	
423023	22	7	D.5	22.0	20	32.2	140	200	0.73	73	
427000	22	7		32.0	20	42.5	291	350	0.83	219	0 (00//
427070	22		G	28.0	28	39.6	281	350	0.80	199	$\rho = 2 - (20/(\text{rmax}^{\circ} \text{sqrt}(Ab)))$
428010	22	8	A	16	28	32.2	144	200	0.72		
428015	22	8	A.5	16	28	32.2	144	200	0.72	72	Story Shear (El. 22) = 2245 kips
429930	22	11	C	16	28	32.2	278	350	0.79	138	Ab = 49950 sq. ft.
429935	22	11	C.5	16	28	32.2	276	350	0.79	137	max (ri) = 235.9
429940	22	11	D	21.2	28	35.1	381	(400)	0.95	230	rmax = max(ri)/story shear 0.105
429950	22	11	E	24.0	28	36.9	362	400	0.91	236	ρ = 1.148
431060	36	1	F	16.0	14	21.3	105	150	0.70	79	TPY JENK)
431065	36	1	F.5	16.0	14	21.3	105	150	0.70	79	(F1 420)
431070	36	1	G	16.0	14	21.3	106	150	0.71	80	Partial Floor Height
431075	36	1	G.5	16.0	14	21.3	106	150	0.71	80	p not calculated
432060	36	2	F	16.0	14	21.3	116	200	0.58	87	
432065	36	2	F.5	16.0	14	21.3	116	200	0.58	87	
434050	36	4	É	12.0	14	18,4	85	150	0.57	56	
434055	36	4	E.5	12.0	14	18.4	85	150	0.57	55	
442060	50	2	F	16.0	25	29.7	159	200	0.79	86	
442065	50	2	E 5	16.0	25	20.7	150	200	0.79	86	
444050	50	4	F.5	12.0	25	23.1	107	160	0.79	00	
444050	50	4	6	12.0	25	27.7	107	150	0.71	40	
444055	50	4	E.5	12.0	25	27.7	107	150	0.71	46	
44/060	50	7	P	32.0	35	47.4	131	200	0.66	89	
44/0/0	50	/	G	28.0	35	44.8	123	200	0.61	77	
449930	50	11	C	16	25	29.7	202	250	0.81	109	
449935	50	11	C.5	16	25	29.7	203	250	0.81	109	
449940	50	11	D	21.2	35	40.9	171	250	0.68	88	
449950	50	11	E	24.0	35	42.4	149	250	0.60	84	
467060	75	7	F	16.0	10	18.9	52	100	0.52	44	
467065	75	7	F.5	0.0	10	10.0	13	100	0.13	0	
467075	75	7	G.5	0.0	10	10.0	16	100	0.16	0	
467078	75	7	G.8	12.0	10	15.6	54	100	0.54	41	
469940	75	11	D	21.2	10	23.4	18	#N/A	#N/A	16	

Note 1: Based on SAP output. Maximum force includes 5% accidental eccentricity in all directions.

J 19932/ENG1DESIGN DEVELOPMENT/EXCEL/seis_brace(pre) xis rho_factor (EW)

Printed: 7/27/00 4:16 PM

FORELL / ELSESSER ENGINEERS, INC.

Structural Engineers 160 PINE ST., 6TH FLOOR SAN FRANCISCO, CA 94111 (415) 837-0700 FAX (415) 837-0800 (415) 837-

SEISMIC ANALYSIS: NORTH-SOUTH DIRECTION BRACE AXIAL FORCES (1st Iteration)

							(note 1)			(note 1)	
Brace				Horizontal	Vertical	D	Max.	D		Horiz.	
Member		Grid	Location	Brace	Projected	Brace	Brace	Brace	D/C	Shear	Reliability/Redundancy
Number	Elevation	Line	Line	Length (ft)	Height (ft)	Length (ft)	Force (k)	Force (k)	Ratio	(k)	Factor, p
512010	0	A	2	16	22	27.2	179	250	0.71	105	
512510	0	A	2.5	16	22	27.2	179	250	0.71	105	
515010	0	A	5	16	22	27.2	193	250	0.72	100	
515510	0	4	5.5	16	22	27.2	170	250	0.73	100	
510010	0	~	0.0	16	22	27.2	1/9	250	0.71	105	
510210	0	~	9	10	22	27.2	265	300	0.88	156	
519310	0	A	9.5	16	22	27.2	265	300	0.88	156	
510040	0	0	0	13.3	22	25.7	196	250	0.79	102	
516540	0	D	6.5	13.3	22	25.7	197	250	0.79	102	
519040	0	D	9	16	22	27.2	248	300	0.83	146	
519340	0	D	9.5	16	22	27.2	244	300	0.81	144	
519540	0	D	10	16	22	27.2	244	300	0.81	143	
519740	0	D	10.5	16	22	27.2	247	300	0.82	145	
512050	0	E	2	16	22	27.2	294	350	0.84	173	
512550	0	E	2.5	16	22	27.2	292	350	0.84	172	$\rho = 2-(20/(rmax*sqrt(Ab)))$
512070	0	G	2	16	22	27.2	340	400	0.85	200	
512570	0	G	2.5	16	22	27.2	338	400	0.84	199	Story Shear (El. 0) = 2908 kips
518078	0	G.8	8	16	22	27.2	323	400	0.81	190	Ab = 49950 sq ft
518578	0	G.8	8.5	16	22	27.2	320	400	0.80	188	max(ri) = 199.8
519078	0	G.8	9	16	22	27.2	330	400	0.82	194	rmax = max(ri)/story shear 0.069
519378	0	G.8	9.5	16	22	27.2	330	400	0.83	194	
522010	22	Δ	2	16	28	22.2	156	200	0.00	77	p = 0.038
522510	22	A	2.5	16	20	32.2	150	200	0.70		
525010	22	~	2.5 E	10	20	32.2	156	200	0.78	11	
525510	22	~	5	10	28	32.2	161	200	0.81	80	
525510	22	A .	5.5	10	28	32.2	161	200	0.81	80	
529010	22	A	9	16	28	32.2	212	250	0.85	105	CHECK MAX D/C RATIO TO
529310	22	A	9.5	16	28	32.2	212	250	0.85	105	SATISFY max $\rho = 1.155$
526040	22	D	6	13.3	28	31.0	150	200	0.75	64	$=> D/C < 1/\rho = 0.87$
526540	22	D	6.5	13.3	28	31.0	150	200	0.75	64	
529040	22	D	9	16	28	32.2	205	250	0.82	102	
529340	22	D	9.5	16	28	32.2	203	250	0.81	101	
529540	22	D	10	16	28	32.2	208	250	0.83	103	
529740	22	D	10.5	16	28	32.2	210	250	0.84	104	
522050	22	E	2	16	14	21.3	152	200	0.76	114	$\rho = 2-(20/(rmax^*sqrt(Ab)))$
522550	22	E	2.5	16	14	21.3	153	200	0.76	115	
521070	22	G	1	21.3	14	25.5	211	250	0.84	177	Story Shear (EL 22) = 2245 kins
523070	22	G	3	21.3	14	25.5	163	250	0.65	136	Ab = 49950 sq ft
528078	22	G.8	8	32	28	42.5	304	400	0.76	229	max(ri) = 237.9
529078	22	G.8	9	32	28	42.5	316	400	0.79	238	rmax = max(ri)/story shear 0.106
529578	22	G.8	10	32	28	42.5	288	400	0.72	217	
532050	36	F	2	16	14	21.3	140	200	0.70	105	p = 1.100
532550	36	E	2.5	16	14	21.0	140	200	0.70	105	
533070	36	G	2.0	10.7	14	17.0	140	200	0.70	105	Partial Floor Height
533570	30	6	35	10.7	14	17.6	136	200	0.68	83	p not calculated
535570	50		3.5	10.7	14	17.6	136	200	0.68	82	
549010	50	A	9	16	25	29.7	135	200	0.67	73	
549310	50	A	9.5	16	25	29.7	135	200	0.67	73	
549040	50	D	9	16	35	38.5	137	200	0.69	57	
549340	50	D	9.5	16	35	38.5	137	200	0.69	57	
549540	50	D	10	16	35	38.5	144	200	0.72	60	
549740	50	D	10.5	16	35	38.5	144	200	0.72	60	
542050	50	E	2	16	25	29.7	121	150	0.80	65	
542550	50	E	2.5	16	25	29.7	121	150	0.80	65	
543070	50	G	3	10.7	25	27.2	64	100	0.64	25	
543570	50	G	3.5	10.7	25	27.2	64	100	0.64	25	
547090	50	J	7	21.3	35	41.0	181	250	0.72	94	
549090	50	1	9	16	35	38.5	177	250	0.72	73	
549390	50		9.5	16	35	38.5	177	250	0.71	73	
567040	75	5	7	50.0	33	50.5	77	250	0.71	13	
507040	75	U,		53.3	10	54.3	75	#N/A	#N/A	74	
567090	75	J	7	21.3	10	23.6	109	#N/A	#N/A	99	

Note 1: Based on SAP output. Maximum force includes 5% accidental eccentricity in all directions.

J:\9932\ENG\DESIGN DEVELOPMENT\EXCEL\seis_brace(pre).xis rho_factor (NS)

FORELL / ELSESSER ENGINEERS, INC. Structural Engineers 160 PINE ST., 6TH FLOOR SAN FRANCISCO, CA 94111

UCSF MISSION BAY COMMUNITY CENTER (415) 837-0700 FAX (415) 837-0800

JOB NO. __________ DATE ________________ BY _____________SHEET NO. 2 ~4 %

SEISMIC ANALYSIS: EAST-WEST DIRECTION BRACE AXIAL FORCES (Final)

				Herizontal	Madiaal		(note 1)			(note 1)	
Brace				Projected	Projected	Braca	Max.	Braas		Horiz.	
Member		Grid	Location	Brace	Brace	Member	Axial	Yield	D/C	Demand	Factor o
Number	Elevation	Line	Line	Length (ft)	Height (ft)	Length (ft)	Force (k)	Force (k)	Ratio	(k)	racio, p
411020	0	1	В	32	22	38.8	157	200	0.79	129	
411060	0	1	F	16.0	22	27.2	215	250	0.86	127	-
411065	0	1	F.5	16.0	22	27.2	213	250	0.85	125	-
411070	0	1	G	16.0	22	27.2	214	250	0.86	126	-
411075	0	1	G.5	16.0	22	27.2	217	250	0.87	128	-
413020	0	3	В	32	22	38.8	157	200	0.79	130	1
414050	0	4	E	12.0	22	25.1	148	200	0.74	71	-
414055	0	4	E.5	12.0	22	25.1	148	200	0.74	71	-
415010	0	5	A	16	22	27.2	232	300	0.74	136	-
415015	0	5	A.5	16	22	27.2	230	300	0.77	135	
415020	0	5	В	16	22	27.2	232	300	0.77	135	-
415025	0	5	B.5	16	22	27.2	244	300	0.01	142	-
417060	0	7	F	32.0	22	38.8	244	250	0.01	143	_
417070	0	7	G	28.0	22	35.6	273	350	0.76	225	
418010	0	8		16	22	27.2	2//	350	0.79	218	$\rho = 2-(20/(rmax^sqrt(Ab)))$
418015	0	8	A 5	16	22	27.2	242	300	0.81	143	
419930	0	11	A.5	10	22	27.2	242	300	0.81	142	Story Shear (El. 0) = 2908 kips
419935	0	11	C.F	10	22	27.2	343	400	0.86	202	Ab = 49950 sq. ft.
410040	0	11	0.5	16	22	27.2	337	400	0.84	198	max (ri) = 278.7
419940	0	11	5	21.2	22	30.5	353	450	0.79	245	rmax = max(ri)/story shear 0.096
419950	0		E	24.0	22	32.6	378	450	0.84	279	ρ = 1.07
421060	22	1	F	16.0	14	21.3	187	250	0.75	141	
421065	22	1	F.5	16.0	14	21.3	186	250	0.74	140	
421070	22	1	G	16.0	14	21.3	185	250	0.74	139	
421075	22	1	G.5	16.0	14	21.3	186	250	0.75	140	CHECK MAX D/C RATIO TO
424050	22	4	E	12.0	14	18.4	144	200	0.72	93	SATISFY max $\rho = 1.149$
424055	22	4	E.5	12.0	14	18.4	143	200	0.72	93	$=> D/C < 1/\rho = 0.87$
425010	22	5	A	16	28	32.2	165	200	0.82	82	
425015	22	5	A.5	16	28	32.2	162	200	0.81	81	
425020	22	5	В	16	28	32.2	153	200	0.76	76	
425025	22	5	B.5	16	28	32.2	143	200	0.72	71	
427060	22	7	F	32.0	28	42.5	289	350	0.83	217	
427070	22	7	G	28.0	28	39.6	279	350	0.80	197	$a = 2 \cdot (20/(rmax^{*}sat(Ab)))$
428010	22	8	A	16	28	32.2	143	200	0.71	71	p = 2-(20/(11/ax sq1((Ab)))
428015	22	8	A.5	16	28	32.2	143	200	0.72	71	Stony Shear (EL 22) = 2245 king
429930	22	11	С	16	28	32.2	278	350	0.79	138	Ab = 40050 ag ft
429935	22	11	C.5	16	28	32.2	276	350	0.79	137	AD = 49950 sq. II.
429940	22	11	D	21.2	28	35.1	381	450	0.85	230	$\max(n) = 256$
429950	22	11	F	24.0	28	36.9	363	450	0.00	230	max = max(m/story shear 0.105
431060	36	1	c	16.0	14	01.0	107	450	0.01	230	p = 1.149
431065	36	1	E 5	16.0	14	21.3	107	150	0.71	81	
431070	36	1	F.5	16.0	14	21.3	107	150	0.72	81	-
431075	36	1	6.5	16.0	14	21.3	109	150	0.73	82	Partial Floor Height
432060	36	2	G.5	16.0	14	21.3	109	150	0.73	82	p not calculated
432060	30	2	F	16.0	14	21.3	118	200	0.59	89	
432005	36	2	F.5	16.0	14	21.3	118	200	0.59	89	
434050	36	4	E	12.0	14	18.4	85	150	0.56	55	
434055	36	4	E.5	12.0	14	18.4	85	150	0.56	55	
442060	50	2	F	16.0	25	29.7	159	200	0.79	86	
442065	50	2	F.5	16.0	25	29.7	159	200	0.79	86	
444050	50	4	E	12.0	25	27.7	107	150	0.72	46	
444055	50	4	E.5	12.0	25	27.7	107	150	0.71	46	
447060	50	7	F	32.0	35	47.4	131	200	0.65	88	
447070	50	7	G	28.0	35	44.8	123	200	0.61	77	
449930	50	11	С	16	25	29.7	202	250	0.81	109	
449935	50	11	C.5	16	25	29.7	203	250	0.81	109	
449940	50	11	D	21.2	35	40.9	171	250	0.68	88	
449950	50	11	E	24.0	35	42.4	149	250	0.60	84	
467060	75	7	F	16.0	10	18.9	52	100	0.50	44	
467065	75	7	E 5	0.0	10	10.9	12	100	0.52	44	
467075	75	7	G.F.	0.0	10	10.0	10	100	0.13	0	
467079	75	7	0.5	12.0	10	10.0	16	100	0.16	0	
467070	75	1	6.8	12.0	10	15.6	54	100	0.54	41	
+09940	15	11	D	21.2	10	23.4	18	#N/A	#N/A	16	

Note 1: Based on SAP output. Maximum force includes 5% accidental eccentricity in all directions.

J.\9932\ENG\DESIGN DEVELOPMENT\EXCEL\seis_brace(final).xls rho_factor (EW)

Printed: 7/27/00 4:16 PM

FORELL / ELSESSER ENGINEERS, INC. Structural Engineers 160 PINE ST., 6TH FLOOR SAN FRANCISCO, CA 94111

RS, INC.		1		
	UCSF MISSION BAY	JOB NO.	9932	
(415) 837-0700	COMMUNITY CENTER	DATE	7/25/00	0
FAX (415) 837-0800		BY DY	SHEET NO.	1-49
				- 11

SEISMIC ANALYSIS: NORTH-SOUTH DIRECTION BRACE AXIAL FORCES (Final)

							(note 1)			(note 1)	
Denes				Horizontal	Vertical		Max.	_		Horiz.	
Member		Grid	Location	Projected	Projected	Brace	Brace	Brace	D/O	Shear	Reliability/Redundancy
Number	Elevation	Line	Line	Length (ft)	Brace Height (ft)	Length (ft)	Axial Force (k)	Force (k)	D/C Ratio	Demand (k)	Factor, p
512010	0	Δ	2	16	22	07.0	170	1 01CE (K)	0.74	105	
512510	0	A	25	10	22	27.2	179	250	0.71	105	
515010	0	~	2.0	10	22	27.2	1/9	250	0.72	105	
515010	0		5	10	22	27.2	183	250	0.73	108	
515510	0	A .	5.5	16	22	27.2	179	250	0.71	105	
519010	0	A	9	16	22	27.2	265	300	0.88	156	<= D/C = 0.88 O.K. by insp. (see note 1)
519310	0	A	9.5	16	22	27.2	265	300	0.88	156	<= D/C = 0.88 O.K. by insp. (see note 1)
516040	0	D	6	13.3	22	25.7	196	250	0.79	102	
516540	0	D	6.5	13.3	22	25.7	197	250	0.79	102	
519040	0	D	9	16	22	27.2	248	300	0.83	146	
519340	0	D	9.5	16	22	27.2	244	300	0.81	144	
519540	0	D	10	16	22	27.2	244	300	0.81	143	
519740	0	D	10.5	16	22	27.2	247	300	0.82	145	
512050	0	E	2	16	22	27.2	294	350	0.84	173	
512550	0	E	2.5	16	22	27.2	292	350	0.84	172	$\rho = 2-(20/(rmax^*sqrt(Ab)))$
512070	0	G	2	16	22	27.2	340	400	0.85	200	, -, -, -, -, -, -, -, -, -, -, -, -, -,
512570	0	G	2.5	16	22	27.2	338	400	0.84	199	Story Shear (FL 0) = 2908 kins
518078	0	G.8	8	16	22	27.2	323	400	0.81	190	Ab = 49950 sq ft
518578	0	G.8	8.5	16	22	27.2	320	400	0.80	188	max (ri) = 199.9
519078	0	G.8	9	16	22	27.2	330	400	0.82	104	rmax = max(ri)/stop/shear 0.060
519378	0	G.8	9.5	16	22	27.2	330	400	0.02	104	
522010	22		2.0	10	20	20.0	455	400	0.02	134	p = 0.70
522010	22		2	10	28	32.2	155	200	0.78	77	
522510	22	A .	2.5	16	28	32.2	155	200	0.78	77	
525010	22	A .	5	16	28	32.2	161	200	0.80	80	
525510	22	A	5.5	16	28	32.2	161	200	0.80	80	
529010	22	A	9	16	28	32.2	211	250	0.85	105	CHECK MAX D/C RATIO TO
529310	22	A	9.5	16	28	32.2	211	250	0.85	105	SATISFY max $\rho = 1.155$
526040	22	D	6	13.3	28	31.0	150	200	0.75	64	$=> D/C < 1/\rho = 0.87$
526540	22	D	6.5	13.3	28	31.0	150	200	0.75	64	
529040	22	D	9	16	28	32.2	205	250	0.82	102	
529340	22	D	9.5	16	28	32.2	203	250	0.81	101	
529540	22	D	10	16	28	32.2	208	250	0.83	103	
529740	22	D	10.5	16	28	32.2	210	250	0.84	104	
522050	22	E	2	16	14	21.3	151	200	0.76	114	$\rho = 2-(20/(rmax^*sqrt(Ab)))$
522550	22	E	2.5	16	14	21.3	152	200	0.76	115	P = ((+()//
521070	22	G	1	21.3	14	25.5	211	250	0.84	176	Story Shear (FL 22) = 2245 kins
523070	22	G	3	21.3	14	25.5	162	250	0.65	136	Ab = 49950 sq ft
528078	22	G.8	8	32	28	42.5	304	400	0.76	228	max (ri) = 237.8
529078	22	G 8	9	32	28	42.5	316	400	0.79	238	rmax = max(ri)/stop/shear 0.106
529578	22	G.8	10	32	28	42.5	288	400	0.72	217	
532050	36	E	2	16	14	21.2	120	200	0.72	105	p 1.100
532050	30		2	10	14	21.3	139	200	0.70	105	Destint Floor Heinte
532550	30		2.5	10	14	21.3	139	200	0.70	105	Partial Floor Height
533070	30	G	3	10.7	14	17.6	136	200	0.68	83	p not calculated
533570	30	G	3.5	10.7	14	17.6	136	200	0.68	82	
549010	50	A	9	16	25	29.7	135	200	0.67	73	
549310	50	A	9.5	16	25	29.7	135	200	0.67	73	
549040	50	D	9	16	35	38.5	137	200	0.69	57	
549340	50	D	9.5	16	35	38.5	137	200	0.69	57	
549540	50	D	10	16	35	38.5	144	200	0.72	60	
549740	50	D	10.5	16	35	38.5	144	200	0.72	60	
542050	50	E	2	16	25	29.7	121	150	0.80	65	
542550	50	E	2.5	16	25	29.7	121	150	0.80	65	
543070	50	G	3	10.7	25	27.2	64	100	0.64	25	
543570	50	G	3.5	10.7	25	27.2	64	100	0.64	25	
547090	50	J	7	21.3	35	41.0	181	250	0.72	94	
549090	50	J	9	16	35	38.5	177	250	0.72	73	
549390	50	1	9.5	16	35	38.5	177	250	0.71	73	
667040	75	5	7	E2 0	10	50.0	75	200	41/1	73	
567040	/5	0	/	53.3	10	54.3	/5	#N/A	#N/A	/4	
56/090	/5	J	/	21.3	10	23.6	109	#N/A	#N/A	99	

Note 1: Based on SAP output. Maximum force includes 5% accidental eccentricity in all directions.

J:\9932\ENG\DESIGN DEVELOPMENT\EXCEL\seis_brace(final).xls rho_factor (NS)