Text in green is to be part of UCSF building database and may be part of UCOP database

UCSF Building Seismic Ratings
Post Street Parking Garage
CAAN \#3033
2325 Post Street, San Francisco, CA 94115
UCSF Campus: Mount Zion

North Elevation

Rating summary	Entry	Notes
UC Seismic Performance Level (rating)	IV	Findings based on drawing review and ASCE 41-17 Tier 1
evaluation ${ }^{1}$		

[^0]
Building information used in this evaluation

- Structural drawings by Raiser Architectural Group, "Divisadero Business Center," dated 1985-05-28 (4 sheets).

Additional building information known to exist

- None

Scope for completing this form

Structural drawings for original construction were reviewed and an ASCE 41-17 Tier 1 evaluation was performed.

Brief description of structure

The building has an area of approximately 15,000 square feet. It was designed in 1985 by the Raiser Architectural Group. The building is 1-story and serves as parking on both the ground floor and roof. The building does not contain a ramp as the building is on a sloping site. Parking on the roof is accessed from Garden Street, while parking on the ground floor is accessed from Post Street. The main floor plate is rectangular in plan 125 ft by 61 ft east-west.

Identification of Levels: Ground floor and roof deck. The roof deck is identified on the existing structural drawings as "Parking Deck".

Foundation system: The foundation consists of concrete strip footings at locations of concrete masonry unit (CMU) walls and concrete spread footings at locations of concrete columns.

Structural system for vertical (gravity) load: The roof consists of a $61 / 2^{\prime \prime}$ concrete post-tensioned slab supported by $8^{\prime \prime}$ CMU walls and $12^{\prime \prime}$ square concrete columns.

Structural system for lateral forces: The lateral-force-resisting system consists of 8" CMU shear walls on three sides of the building.

Building Code: This building was designed in accordance with the 1979 UBC.

Building Condition: Good. No significant structural distress or damage observed.
Building Response in 1989 Loma Prieta Earthquake: Unknown.

Brief description of seismic deficiencies and expected seismic performance including structural behavior modes

Potential seismic deficiencies identified by the Tier 1 procedure include the following:

- Torsional Irregularity: There are walls located primarily on three sides of the building (Post Street side open), creating a torsional irregularity.
- Adjacent Buildings: The parking structure was constructed against a 3-story wood building on the west side without much separation. After construction of the parking garage, the OSHER building was constructed with a 4 " gap between it and the east side of the garage.

Further evaluation of the 1-story building was conducted using a relative rigidity analysis accounting for torsion. Based on the further evaluation (Tier 2, $\mathrm{m}=3$), the maximum shear stress in the CMU walls is 86 psi. The shear capacity of the walls including steel is 131 psi . The expected displacement at the open side of the building is approximately $1 / 4^{\prime \prime}$. The $12^{\prime \prime}$ square concrete columns at the front consist of 4 - \#9 vertical bars and \#3 closed ties @ 6 " at the top and bottom of the column. The column has a displacement capacity of approximately $1 / 2^{\prime \prime}$ based on its shear and bending capacities. Therefore, the initial torsional irregularity is judged to be compliant.

The seismic separation at the adjacent 4 story building appears insufficient to avoid pounding. However, damage to the parking garage is not expected to pose a safety concern. Local damage to the wood frame building is expected.

Structural deficiency	Affects rating?	Structural deficiency	Affects rating?
Lateral system stress check (wall shear, column shear or flexure, or brace axial as applicable)	N	Openings at shear walls (concrete or masonry)	N
Load path	N	Liquefaction	N
Adjacent buildings	Y	Slope failure	N
Weak story	N	Surface fault rupture	N
Soft story	N	Masonry or concrete wall anchorage at flexible diaphragm	N
Geometry (vertical irregularities)	N	URM wall height-to-thickness ratio	N
Torsion	Y	URM parapets or cornices	N
Mass - vertical irregularity	N	URM chimney	N
Cripple walls	N	Heavy partitions braced by ceilings	N
Wood sills (bolting)	N	Appendages	N
Diaphragm continuity	N		

Summary of review of non-structural life-safety concerns, including at exit routes. ${ }^{2}$

None present.

UCOP non-structural checklist item	Life safety hazard?	UCOP non-structural checklist item	Life safety hazard?
Heavy ceilings, feature or ornamentation above large lecture halls, auditoriums, lobbies or other areas where large numbers of people congregate	None	None	
Heavy masonry or stone veneer above exit ways and public access areas	None	Masonry chimneys	None
Unbraced masonry parapets, cornices or other ornamentation above exit ways and public access areas	None	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc.	None

[^1]
Basis of Seismic Performance Level Rating

The garage contains a substantial amount of shear wall that limits the seismic drift imposed on the columns. The walls are expected to protect the columns from damage that could impact the gravity load system. Drop panels and reinforcement protect against punching shear concerns at the slab.

Recommendations for further evaluation or retrofit

No further evaluation or retrofit is recommended.

Peer review comments on rating

The structural members of the UCSF Seismic Review Committee (SRC) reviewed the evaluation on June 5, 2019 and are unanimous that the rating is IV.

Additional building data	Entry	Notes
Latitude	37.7841	
Longitude	-122.4402	
Are there other structures besides this one under the same CAAN\#	No	
Number of stories above lowest perimeter grade	1	
Number of stories (basements) below lowest perimeter grade	0	
Building occupiable area (OGSF)	15000	Calculated
Risk Category per 2016 CBC 1604.5	11	
Building structural height, h_{n}	10 ft	Structural height defined per ASCE 7-16 Section 11.2
Coefficient for period, C_{t}	0.02	Per ASCE 41-17 equation 4-4
Coefficient for period, β	0.75	Per ASCE 41-17 equation 4-4
Estimated fundamental period	0.11 sec	Per ASCE 41-17 equation 4-4
Site data		
975 yr hazard parameters S_{s}, S_{1}	1.436,0.973	
Site class	D	
Site class basis	Geotech Parameters	UCSF Group 2 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Site parameters F_{a}, F_{v}	1.000, 1.741	
Ground motion parameters $S_{c s}, S_{c 1}$	1.436,0.973	
S_{a} at building period	1.436	
Site $V_{\text {s30 }}$	305 m/s	
$V_{s 30}$ basis	Estimated	UCSF Group 2 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Liquefaction potential/basis	No	UCSF Group 2 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Landslide potential/basis	No	UCSF Group 2 Buildings - Tier 1 Geotechnical Assessment, Egan (2019)
Active fault-rupture hazard identified at site?	No	

No		
Applicable code		
Applicable code or approx. date of original construction	1979 UBC	Code identified on Sheet S0.1
Applicable code for partial retrofit	None	
Applicable code for full retrofit	None	
Model building data		
Model building type North-South	RM2 Reinforced Masonry Walls w/Stiff Diaphragms	
Model building type East-West	RM2 Reinforced Masonry Walls w/Stiff Diaphragms	
FEMA P-154 score	N/A	Not included here because an ASCE 41-17 Tier 1 evaluation was conducted.
Previous ratings		
Most recent rating	IV	2013 UCSF SRC Rating
Date of most recent rating	10/7/2013	
$2^{\text {nd }}$ most recent rating	-	
Date of $2^{\text {nd }}$ most recent rating	-	
$3{ }^{\text {rd }}$ most recent rating	-	
Date of $3^{\text {rd }}$ most recent rating	-	
Appendices		
ASCE 41 Tier 1 checklist included here?	Yes	Refer to attached checklist file

Appendix A

Additional Images

Figure 1. - 3-story wood building adjacent to parking garage.

Figure 2. - Garage floor plan

Figure 3. - Building section of $8^{\prime \prime} \mathrm{CMU}$ wall

Figure 4. - Building section of $12^{\prime \prime}$ concrete column

Figure 5. - Adjacent building on east side

Figure 6.- Garage interior

Appendix B

ASCE 41-17 Tier 1 Checklists (Structural)

| UC Campus: | Mount Zion | | Date: | June 20, 2019 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3033 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | DBH | Checked: | MTP |
| Building Address: | 2325 Post Street; San Francisco, cA 94115 | Page: | 1 | of | 3 |
| ASCE 41-17 | | | | | |
| CollapSe Prevention BaSic Configuration Checklist | | | | | |

LOW SEISMICITY

BUILDING SYSTEMS - GENERAL

	Description
C NC N/A U	LOAD PATH: The structure contains a complete, well-defined load path, including structural elements and connections, that serves to transfer the inertial forces associated with the mass of all elements of the building to the foundation. (Commentary: Sec. A.2.1.1. Tier 2: Sec. 5.4.1.1) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & 6 & 0 \end{array}$	ADJACENT BUILDINGS: The clear distance between the building being evaluated and any adjacent building is greater than 0.25% of the height of the shorter building in low seismicity, 0.5% in moderate seismicity, and 1.5% in high seismicity. (Commentary: Sec. A.2.1.2. Tier 2: Sec. 5.4.1.2) Comments: 4" gap between structure and OSHER building. Building was constructed against 3story wood building on west side, gap is unknown.
$\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ C & C & \odot & C \end{array}$	MEZZANINES: Interior mezzanine levels are braced independently from the main structure or are anchored to the seismic-force-resisting elements of the main structure. (Commentary: Sec. A.2.1.3. Tier 2: Sec. 5.4.1.3) Comments:

BUILDING SYSTEMS - BUILDING CONFIGURATION

		Description	
\mathbf{C}	$\mathbf{N C}$	\mathbf{N} / \mathbf{A}	\mathbf{U}
Comments:			
WEAK STORY: The sum of the shear strengths of the seismic-force-resisting system in any story in each direction is not			
less than 80\% of the strength in the adjacent story above. (Commentary: Sec. A2.2.2. Tier 2: Sec. 5.4.2.1)			

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)	
GEOLOGIC SITE HAZARD	
	Description
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & 0 & C & C \end{array}$	LIQUEFACTION: Liquefaction-susceptible, saturated, loose granular soils that could jeopardize the building's seismic performance do not exist in the foundation soils at depths within $50 \mathrm{ft}(15.2 \mathrm{~m})$ under the building. (Commentary: Sec. A.6.1.1. Tier 2: 5.4.3.1) Comments:
$\begin{array}{cccc} C & N C & N / A & U \\ C & 0 & C & 0 \end{array}$	SLOPE FAILURE: The building site is located away from potential earthquake-induced slope failures or rockfalls so that it is unaffected by such failures or is capable of accommodating any predicted movements without failure. (Commentary: Sec. A.6.1.2. Tier 2: 5.4.3.1) Comments:

Note: C = Compliant NC=Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable U = Unknown

| UC Campus: | Mount Zion | | Date: | June 20, 2019 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3033 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | DBH | Checked: | MTP |
| Building Address: | 2325 Post Street; San Francisco, cA 94115 | Page: | 3 | of | 3 |
| ASCE 41-17 | | | | | |
| CollapSe Prevention BaSic Configuration Checklist | | | | | |

MODERATE SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW SEISMICITY)

GEOLOGIC SITE HAZARD

| \mathbf{C} | $\mathbf{N C}$ | \mathbf{N} / \mathbf{A} | \mathbf{U} | SURFACE FAULT RUPTURE: Surface fault rupture and surface displacement at the building site are not anticipated. |
| :--- | :--- | :---: | :---: | :--- | :--- |
| (Commentary: Sec. A.6.1.3. Tier 2: 5.4.3.1) | C | C | C | |
| Comments: | | | | |

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR MODERATE SEISMICITY)

FOUNDATION CONFIGURATION

	Description
$C \text { NC N/A U }$	OVERTURNING: The ratio of the least horizontal dimension of the seismic-force-resisting system at the foundation level to the building height (base/height) is greater than $0.6 \mathrm{~S}_{\text {a. }}$ (Commentary: Sec. A.6.2.1. Tier 2: Sec. 5.4.3.3) Comments:
$C \text { NC N/A U }$	TIES BETWEEN FOUNDATION ELEMENTS: The foundation has ties adequate to resist seismic forces where footings, piles, and piers are not restrained by beams, slabs, or soils classified as Site Class A, B, or C. (Commentary: Sec. A.6.2.2. Tier 2: Sec. 5.4.3.4) Comments:

Note: $\mathbf{C}=$ Compliant $\mathbf{N C}=$ Noncompliant $\mathbf{N} / \mathbf{A}=$ Not Applicable $\mathbf{U}=$ Unknown

| UC Campus: | Mount Zion | | Date: | June 20, 2019 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3033 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | DBH | Checked: | MTP |
| Building Address: | 2325 Post Street; San Francisco, cA 94115 | Page: | 1 | of | 4 |
| Collapse Prevention Structural Checklist For Building Type RMM-RM2 | | | | | |

LOW AND M	ODERATE SEISMICITY
SEISMIC-FORCE-RESISTING SYSTEM	
	Description
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & 0 & 0 & C \end{array}$	REDUNDANCY: The number of lines of shear walls in each principal direction is greater than or equal to 2. (Commentary: Sec. A.3.2.1.1. Tier 2: Sec. 5.5.1.1) Comments:
$\begin{array}{lccc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	SHEAR STRESS CHECK: The shear stress in the reinforced masonry shear walls, calculated using the Quick Check procedure of Section 4.4.3.3, is less than $70 \mathrm{Ib} / \mathrm{in}^{2}{ }^{2}(0.48 \mathrm{MPa}$). (Commentary: Sec. A.3.2.4.1. Tier 2: Sec. 5.5.3.1.1) Comments: Max shear stress transverse direction = 86 psi , in longitudinal direction = 29 psi
$\begin{array}{cccc} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	REINFORCING STEEL: The total vertical and horizontal reinforcing steel ratio in reinforced masonry walls is greater than 0.002 of the wall with the minimum of 0.0007 in either of the two directions; the spacing of reinforcing steel is less than 48 in. (1220 mm), and all vertical bars extend to the top of the walls. (Commentary: Sec. A.3.2.4.2. Tier 2: Sec. 5.5.3.1.3) Comments:
STIFF DIAPHRAGMS	
	Description
$\begin{array}{llll} \hline C & N C & N / A & U \\ C & C & C & C \end{array}$	TOPPING SLAB: Precast concrete diaphragm elements are interconnected by a continuous reinforced concrete topping slab. (Commentary: Sec. A.4.5.1. Tier 2: Sec. 5.6.4) Comments:
CONNECTIONS	
	Description
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & C & C \end{array}$	WALL ANCHORAGE: Exterior concrete or masonry walls that are dependent on the diaphragm for lateral support are anchored for out-of-plane forces at each diaphragm level with steel anchors, reinforcing dowels, or straps that are developed into the diaphragm. Connections have strength to resist the connection force calculated in the Quick Check procedure of Section 4.4.3.7. (Commentary: Sec. A.5.1.1. Tier 2: Sec. 5.7.1.1) Comments:

| UC Campus: | Mount Zion | | Date: | June 20, 2019 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3033 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | DBH | Checked: | MTP |
| Building Address: | 2325 Post Street; San Francisco, cA 94115 | Page: | 2 | of | 4 |
| Collapse Prevention Structural Checklist For Building Type RMM-RM2 | | | | | |

$\begin{array}{cccc} \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ C & C & \bullet & C \end{array}$	WOOD LEDGERS: The connection between the wall panels and the diaphragm does not induce cross-grain bending or tension in the wood ledgers. (Commentary: Sec. A.5.1.2. Tier 2: Sec. 5.7.1.3) Comments:
C NC N/A U $\therefore \mathrm{C} O$	TRANSFER TO SHEAR WALLS: Diaphragms are connected for transfer of seismic forces to the shear walls. (Commentary: Sec. A.5.2.1. Tier 2: Sec. 5.7.2) Comments:
$\begin{array}{cccc} C & N C & N / A & U \\ C & C & \bullet & C \end{array}$	TOPPING SLAB TO WALLS OR FRAMES: Reinforced concrete topping slabs that interconnect the precast concrete diaphragm elements are doweled for transfer of forces into the shear wall or frame elements. (Commentary: Sec. A.5.2.3. Tier 2: Sec. 5.7.2) Comments:
$C \text { NC N/A U }$ $\because 000$	FOUNDATION DOWELS: Wall reinforcement is doweled into the foundation. (Commentary: Sec. A.5.3.5. Tier 2: Sec. 5.7.3.4) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	GIRDER-COLUMN CONNECTION: There is a positive connection using plates, connection hardware, or straps between the girder and the column support. (Commentary: Sec. A.5.4.1. Tier 2: Sec. 5.7.4.1) Comments:

HIGH SEISMICITY (COMPLETE THE FOLLOWING ITEMS IN ADDITION TO THE ITEMS FOR LOW AND MODERATE SEISMICITY)

STIFF DIAPHRAGMS

				Description
\mathbf{C}	$\mathbf{N C}$	\mathbf{N} / \mathbf{A}	\mathbf{U}	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25\% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3) Comments:
\mathbf{C}	$\mathbf{N C}$	\mathbf{N} / \mathbf{A}	\mathbf{U}	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than 8 ft (2.4 m) long. (Commentary: Sec. A.4.1.6. Tier 2: Sec. 5.6.1.3) Comments:

| UC Campus: | Mount Zion | | Date: | June 20, 2019 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3033 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | DBH | Checked: | MTP |
| Building Address: | 2325 Post Street; San Francisco, cA 94115 | Page: | 3 | of | 4 |
| Collapse Prevention Structural Checklist For Building Type RMM-RM2 | | | | | |

FLEXIBLE DIAPHRAGMS

	Description
$\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	CROSS TIES: There are continuous cross ties between diaphragm chords. (Commentary: Sec. A.4.1.2. Tier 2: Sec. 5.6.1.2) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathbf{N C} & \mathbf{N} / \mathbf{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	OPENINGS AT SHEAR WALLS: Diaphragm openings immediately adjacent to the shear walls are less than 25% of the wall length. (Commentary: Sec. A.4.1.4. Tier 2: Sec. 5.6.1.3) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	OPENINGS AT EXTERIOR MASONRY SHEAR WALLS: Diaphragm openings immediately adjacent to exterior masonry shear walls are not greater than $8 \mathrm{ft}(2.4 \mathrm{~m})$ long. (Commentary: Sec. A.4.1.6. Tier 2: Sec. 5.6.1.3) Comments:
C NC N/A U $C O C$	STRAIGHT SHEATHING: All straight-sheathed diaphragms have aspect ratios less than 2-to-1 in the direction being considered. (Commentary: Sec. A.4.2.1. Tier 2: Sec. 5.6.2) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	SPANS: All wood diaphragms with spans greater than $24 \mathrm{ft}(7.3 \mathrm{~m})$ consist of wood structural panels or diagonal sheathing. (Commentary: Sec. A.4.2.2. Tier 2: Sec. 5.6.2) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{C} & \bullet & \mathrm{C} \end{array}$	DIAGONALLY SHEATHED AND UNBLOCKED DIAPHRAGMS: All diagonally sheathed or unblocked wood structural panel diaphragms have horizontal spans less than $40 \mathrm{ft}(12.2 \mathrm{~m})$ and aspect ratios less than or equal to 4 -to-1. (Commentary: Sec. A.4.2.3. Tier 2: Sec. 5.6.2) Comments:
$\begin{array}{cccc} \mathbf{C} & \mathrm{NC} & \mathrm{~N} / \mathrm{A} & \mathbf{U} \\ \mathrm{C} & \mathrm{O} & \bullet & \mathrm{C} \end{array}$	OTHER DIAPHRAGMS: Diaphragms do not consist of a system other than wood, metal deck, concrete, or horizontal bracing. (Commentary: Sec. A.4.7.1. Tier 2: Sec. 5.6.5) Comments:

| UC Campus: | Mount Zion | | Date: | June 20, 2019 | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3033 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | DBH | Checked: | MTP |
| Building Address: | 2325 Post Street; San Francisco, cA 94115 | Page: | 4 | of | 4 |
| ASCE 41-17 | | | | | |
| Collapse Prevention Structural Checkist For Bullding Type RM1-RM2 | | | | | |

CONNECTIONS

		Description
\mathbf{C}	NC N/A U	STIFFNESS OF WALL ANCHORS: Anchors of concrete or masonry walls to wood structural elements are installed taut and are stiff enough to limit the relative movement between the wall and the diaphragm to no greater than $1 / 8$ in. (3 mm) before engagement of the anchors. (Commentary: Sec. A.5.1.4. Tier 2: Sec. 5.7.1.2) Comments:

Appendix C

UCOP Seismic Safety policy Falling Hazards Assessment Summary

| UC Campus: | UCSF Mount Zion | | Date: | $07 / 24 / 2019$ | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building CAAN: | 3303 | Auxiliary
 CAAN: | By Firm: | Estructure | |
| Building Name: | Post Street Parking Garage | Initials: | JP | Checked: | MTP |
| Building Address: | 2325 Post Street, San Francisco, cA 94115 | Page: | 1 | of | 1 |
| | UCOP SEISMIC SAFETY POLICY | | | | |

	Description
$\begin{array}{ll} \mathbf{P} & \mathbf{N} / \mathbf{A} \\ \square & \boxtimes \end{array}$	Heavy ceilings, features or ornamentation above large lecture halls, auditoriums, lobbies, or other areas where large numbers of people congregate (50 ppl or more) Comments:
$\begin{array}{ll} \mathbf{P} & \text { N/A } \\ \square & \boxtimes \end{array}$	Heavy masonry or stone veneer above exit ways or public access areas Comments:
$\begin{array}{cc} \hline \mathbf{P} & \text { N/A } \\ \square \\ \square \end{array}$	Unbraced masonry parapets, cornices, or other ornamentation above exit ways or public access areas Comments:
P N/A \square \boxtimes	Unrestrained hazardous material storage Comments:
\mathbf{P} N/A \square \boxtimes	Masonry chimneys Comments:
\mathbf{P} N/A \square \boxtimes	Unrestrained natural gas-fueled equipment such as water heaters, boilers, emergency generators, etc. Comments:
	Other: Comments:
\mathbf{P} N/A \square \boxtimes	Other: Comments:
\mathbf{P} N/A \square \boxtimes	Other: Comments:

Falling Hazards Risk: Low

Appendix D

Quick Check Calculations

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	0
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

WEIGHT TAKEOFF
SLAB $6.5^{\prime \prime}$ CONC SLAB
M/E/P/FP
CEILING
MISC.

SLAB $6.5^{\prime \prime}$ CONC SLAB
M/E/P/FP
CEILING
81.3 psf

2 psf
4 psf
MISC.
2.7 psf
90 pst

SLAB 90psf $(125.3)\left(61.3^{\prime}\right)=692^{k}$
8'1.LMU WALLS 90 PSf(5^{\prime}) $\left(350^{\prime}\right)=158 \mathrm{k}$
$6^{\prime \prime}$ PARAPET $75 p s f\left(3.5^{\prime}\right)\left(180^{\prime}\right)=\frac{47^{k}}{897^{k}}$
TOTAL
SEISMIC FORCES

$$
\begin{aligned}
& V=C_{1} C_{2} C_{m} S_{a} W \\
& C_{a}=\frac{S_{D_{1}}}{T}<S_{D S} \\
& \quad S_{D_{1}}=0.559 \\
& S_{D_{S}}=1.436 \\
& S_{a}=\frac{S_{D 1}}{T}=\frac{0.02(10)^{.75}=0.11 \mathrm{~S}}{0.11}=4.97 \Rightarrow \text { USE } 1.436 \\
& C_{1} C_{2}=1.4 \quad \text { TABLE } 7-3 \quad T<0.3 \quad 2 \leq m_{\max }<6 \\
& C_{M}= \\
& V=(1.4)(1.0)(1.436)\left(897^{\mathrm{k}}\right)=1803 \mathrm{k}
\end{aligned}
$$

Estructure

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	1
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

INPUT DATA

Center of Mass from Origin:

| Lx: | Building overall plan dimension X-dir $=$ | $\mathbf{1 2 5 . 3 3}$ feet |
| ---: | ---: | ---: | ---: |
| Ly: | Building overall plan dimension Y-dir $=$ | $\mathbf{6 1 . 3 3}$ feet |
| Xcm: | Center of mass X-dir $=$ | $\mathbf{6 1 . 9 2}$ feet |
| Ycm: | Center of mass Y-dir $=$ | $\mathbf{2 9 . 2 4}$ feet |
| | | \mathbf{Y} |

* If wall is pierced or has other irregularities, enter the combined shear and flexural stiffness.

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	2
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

CALCULATIONS

Compute Relative Rigidity of Walls Along Major Building Axes

	Local Area (Al)	R I G I D I T Y						Rigidity Moments	
		Shear		Flexural		Total			
Wall \#	$\begin{gathered} \hline \mathrm{Al} \\ \mathrm{sf} \end{gathered}$	$\begin{aligned} & \hline \mathrm{RvX} \\ & \mathrm{k} / \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { RvY } \\ & \mathrm{k} / \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { RfX } \\ & \text { k/in } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { RfY } \\ & \text { k/in } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{RtX} \\ & \mathrm{k} / \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{RtY} \\ & \mathrm{k} / \mathrm{in} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { RtX*Y } \\ \text { kips } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{RtY}^{*} \mathrm{X} \\ \text { kips } \\ \hline \end{gathered}$
1	43.6	10976	0	351378	0	10644	0	0	0
2	37.0	9324	0	215402	0	8937	0	0	0
3	3.0	756	0	115	0	100	0	20634	0
4	83.6	21056	0	2480678	0	20879	0	15366783	0
5	40.9	0	10304	0	290710	0.0	9951.3	0	0
6	12.2	0	3080	0	7764	0.0	2205.2	0	1728882
7	12.2	0	3080	0	7764	0.0	2205.2	0	1847964
						40559	14362	15387416	3576846
						(A)	(B)		(D)

```
Ay & Ax:
RvX & RvY:
RfX & RfY:
Wall area tributary to X or Y direction = T(L)\operatorname{sin}(\textrm{An})\mathrm{ or T(L)}\operatorname{cos}(\textrm{An})
    Wall shear rigidity = }\textrm{Ax}(0.4\textrm{E})/(1.2\textrm{H})\mathrm{ or }\textrm{Ay}(0.4\textrm{E})/(1.2H
    Wall flexural rigidity = (FF)E (I/ H^3)
I:
    Moment of Inertia = T(Ax/T)^3 or T(Ay/T)^3
    Total wall rigidity = K or, if unknown, (RvX)(RfX)/(RvX + RfX) and
    (RvY)(RfY)/(RvY + RfY)
RtX*Y & RtY*X:
Wall rigidity * Moment arm = (Y)RtX or (X)RtY
```


Estructure

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	3
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

CALCULATIONS (cont)

Compute Torsional Coefficients:

Xcr:	Center of Rigidity $=$	$(\mathrm{D} / \mathrm{B})=$	$20.8 \text { feet }$
Ycr:		$(\mathrm{C} / \mathrm{A})=$	31.6 feet
Xt :	Torsional Eccentricity $=$	$(\mathrm{Xcr}-\mathrm{Xcm})=$	-41.2 feet
Yt:		$(\mathrm{Ycr}-\mathrm{Ycm})=$	2.4 feet
XAt:	Accidental Torsion $=$	$(0.05 \mathrm{Lx})$ if considered $=$	-6.3 feet
YAt:		(0.05Ly) if considered $=$	3.1 feet
Px:	Resultant Forces $=$	$(\mathrm{L} 1 \cos (\mathrm{q} 1))+(\mathrm{L} 2 \cos (\mathrm{q} 2))=$	1803.0 kips
Py:		$(\mathrm{L} 1 \sin (\mathrm{q} 1))+(\mathrm{L} 2 \sin (\mathrm{q} 2))=$	0.0 kips
Xme+:	Maximum Eccentricity w/ + Acc. Torsion $=$	$(X t+X A t)=$	-47.4 feet
Yme+:		$(\mathrm{Yt}+\mathrm{YAt})=$	5.4 feet
Xme-:	Maximum Eccentricity w/ - Acc. Torsion $=$	$(\mathrm{Xt}-\mathrm{XAt})=$	-34.9 feet
Yme-:		$(\mathrm{Yt}-\mathrm{YAt})=$	-0.7 feet
+Mt:	+ Maximum Torsional Moment $=$	$\mathrm{Px}(\mathrm{Yme}+)-\mathrm{Py}(\mathrm{Xme}+)=$	9812 kip-feet
-Mt:	- Maximum Torsional Moment $=$	$\mathrm{Px}(\mathrm{Yme}-)-\mathrm{Py}(\mathrm{Xme}-)=$	-1247 kip-feet

Compute Rigidity Distribution:

Wall \#	Total Rigidity		Distance from C.R. to C.M. of Wall		Rigidity * Distance		Rigidity * Distance Sqrd.	
	RtX	RtY	X"	Y"	Rtx*Y"	Rty*X"	Rtx*Y"2	Rty*X"2
	k/in.	k/in.	ft .	ft .	kips	kips	kft .	kft .
1	10644	0	11.9	-31.6	-4037966	0	127661079	0
2	8937	0	76.8	-31.6	-3390594	0	107194267	0
3	100	0	46.8	-14.4	-17183	0	246835	0
4	20879	0	41.9	29.7	7445743	0	221273634	0
5	0.0	9951.3	-20.8	-0.9	0	-2478412	0	51438316
6	0.0	2205.2	44.6	-22.4	0	1179666	0	52588064
7	0.0	2205.2	49.1	-22.4	0	1298747	0	63740920
							456375815	167767299
								(F)

$\mathrm{J}=\quad$ Tosional Moment of Inertia $=(\mathrm{E})+(\mathrm{F})=624143115$ kip-foot

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	4
Project	Reviewed by	Date
\quad UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

Compute Resultant Forces:
WALLFORCES + ACCIDENTAL TORSION

Wall \#	Wall Orientation	WALLFORCES + ACCIDENTAL TORSION								
		Direct		From Moment		Total (Global Axes)		Maximum Force of Direct, From Moment, Total		
		$\begin{aligned} & \hline \text { Fpx } \\ & \text { kips } \\ & \hline \end{aligned}$	Fpy kips	Fmx kips	Fmy kips	Ftx kips	Fty kips	Fx kips	Fy kips	Total kips
1	Principal	473.1	0.0	63.5	0.0	536.6	0.0	536.6	0.0	536.6
2	Principal	397.3	0.0	53.3	0.0	450.6	0.0	450.6	0.0	450.6
3	Principal	4.4	0.0	0.3	0.0	4.7	0.0	4.7	0.0	4.7
4	Principal	928.1	0.0	-117.0	0.0	811.1	0.0	928.1	0.0	928.1
5	Principal	0.0	0.0	0.0	-39.0	0.0	-39.0	0.0	39.0	39.0
6	Principal	0.0	0.0	0.0	18.5	0.0	18.5	0.0	18.5	18.5
7	Principal	0.0	0.0	0.0	20.4	0.0	20.4	0.0	20.4	20.4

WALLFORCES - ACCIDENTAL TORSION

Wall \#	Wall Orientation	WALLFORCES - ACCIDENTAL TORSION								
		Direct		From Moment		Total (Global Axes)		Maximum Force of Direct, From Moment, Total		
		Fpx kips	Fpy kips	Fmx kips	Fmy kips	Ftx kips	Fty kips	$\begin{gathered} \hline \text { Fx } \\ \text { kips } \\ \hline \end{gathered}$	Fy kips	Total kips
1	Principal	473.1	0.0	-8.1	0.0	465.1	0.0	473.1	0.0	473.1
2	Principal	397.3	0.0	-6.8	0.0	390.5	0.0	397.3	0.0	397.3
3	Principal	4.4	0.0	0.0	0.0	4.4	0.0	4.4	0.0	4.4
4	Principal	928.1	0.0	14.9	0.0	943.0	0.0	943.0	0.0	943.0
5	Principal	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	5.0
6	Principal	0.0	0.0	0.0	-2.4	0.0	-2.4	0.0	2.4	2.4
7	Principal	0.0	0.0	0.0	-2.6	0.0	-2.6	0.0	2.6	2.6

Fpx \& Fpy:	Direct force from P only $=$	$(\operatorname{Px}(\mathrm{RtX} / \mathrm{Sum} \mathrm{RtX})$) or (Py(RfY / Sum RfY)
Fmx \& Fmy:	Force resultant from torsional moment $=$	$(\mathrm{Mt}(\operatorname{Rx}(\mathrm{Y}) / \mathrm{J}))$ or $(\mathrm{Mt}(\mathrm{Ry}(\mathrm{X}) / \mathrm{J}))$
Ftx \& Fty:	Total actual force of direct and torsion $=$	($\mathrm{Fp}+\mathrm{Fm}$)
Fx \& Fy:	Design force - Maximum of three forces above $=$	(Max of (Fp, Fm, Ft)
Total:	Resultant force along axis of wall (Walls Orientated to Principal Axes) $=$	$\left(\left(\mathrm{Fx}^{\wedge} 2+\mathrm{Fy}^{\wedge} 2\right)^{\wedge} .5\right)$
Total:	Resultant force along axis of wall (Walls Orientated to Skewed Axes) =	$\mathrm{Fx} / \operatorname{Cos}(\mathrm{q})+\mathrm{Fy} / \operatorname{Sin}(\mathrm{q})$

Estructure

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	5
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

Wall Forces Summary

Wall \#	Wall Orientation	+ Accident. Torsion Total kips	- Accident. Torsion Total kips	Design Maximum Total kips	Design Maximum Total plf	Capacity Total plf	$\begin{gathered} \text { Demand/ } \\ \text { Capacity } \\ \text { Ratio } \end{gathered}$
1	Principal	537	473	537	8214	12587	0.65
2	Principal	451	397	451	8119	12587	0.65
3	Principal	5	4	5	1045	12587	0.08
4	Principal	928	943	943	7524	12587	0.60
5	Principal	39	5	39	635	12587	0.05
6	Principal	19	2	19	1012	12587	0.08
7	Principal	20	3	20	1114	12587	0.09

Estructure

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	6
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

INPUT DATA

Center of Mass from Origin:

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	7
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

CALCULATIONS

Compute Relative Rigidity of Walls Along Major Building Axes


```
Ay & Ax: Wall area tributary to X or Y direction = T(L)\operatorname{sin}(\textrm{An})}\mathrm{ or }\textrm{T}(\textrm{L})\operatorname{cos}(\textrm{An}
RvX & RvY:
RfX & RfY:
I:
RtX & RtY:
RtX*Y & RtY*X:
    Wall rigidity * Moment arm = (Y)RtX or (X)RtY
```

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	8
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

CALCULATIONS (cont)

Compute Torsional Coefficients:

Xcr:	Center of Rigidity $=$	$(\mathrm{D} / \mathrm{B})=$	20.8 feet
Ycr:		$(\mathrm{C} / \mathrm{A})=$	31.6 feet
Xt:	Torsional Eccentricity =	$(\mathrm{Xcr}-\mathrm{Xcm})=$	-41.2 feet
Yt:		$(\mathrm{Ycr}-\mathrm{Ycm})=$	2.4 feet
XAt:	Accidental Torsion $=$	(0.05Lx) if considered $=$	-6.3 feet
YAt:		(0.05Ly) if considered $=$	3.1 feet
Px:	Resultant Forces $=$	$(\mathrm{L} 1 \cos (\mathrm{q} 1))+(\mathrm{L} 2 \cos (\mathrm{q} 2))=$	0.0 kips
Py:		$(\mathrm{L} 1 \sin (\mathrm{q} 1))+(\mathrm{L} 2 \sin (\mathrm{q} 2))=$	1803.0 kips
Xme+:	Maximum Eccentricity w/ + Acc. Torsion $=$	$(\mathrm{Xt}+\mathrm{XAt})=$	-47.4 feet
Yme+:		$(\mathrm{Yt}+\mathrm{YAt})=$	5.4 feet
Xme-:	Maximum Eccentricity w/ - Acc. Torsion $=$	$(\mathrm{Xt}-\mathrm{XAt})=$	-34.9 feet
Yme-:		$(\mathrm{Yt}-\mathrm{YAt})=$	-0.7 feet
+Mt:	+ Maximum Torsional Moment $=$	$\mathrm{Px}(\mathrm{Yme}+)-\mathrm{Py}(\mathrm{Xme}+)=$	85520 kip-
-Mt:	- Maximum Torsional Moment $=$	$\operatorname{Px}($ Yme -)-Py(Xme-) $=$	62923 kip-

Compute Rigidity Distribution:

Wall \#	Total Rigidity		Distance from C.R. to C.M. of Wall		$\underline{\text { Rigidity * Distance }}$		Rigidity * Distance Sqrd.	
	RtX	RtY	X"	Y"	Rtx*Y"	Rty*X"	Rtx*Y"2	Rty*X"2
	k / in.	k/in.	ft .	ft .	kips	kips	kft .	kft .
1	10644	0	11.9	-31.6	-4037966	0	127661079	0
2	8937	0	76.8	-31.6	-3390594	0	107194267	0
3	100	0	46.8	-14.4	-17183	0	246835	0
4	20879	0	41.9	29.7	7445743	0	221273634	0
5	0.0	9951.3	-20.8	-0.9	0	-2478412	0	51438316
6	0.0	2205.2	44.6	-22.4	0	1179666	0	52588064
7	0.0	2205.2	49.1	-22.4	0	1298747	0	63740920
							456375815	167767299
							(E)	(F)

[^2]| Subject | Prepared by | Page |
| :--- | :---: | :---: |
| ASCE 41-17 Tier 2 Evaluation | DBH | 9 |
| Project | Reviewed by | Date |
| \quad UCSF Tier 1 Seismic Ratings | MTP | $6 / 5 / 19$ |

Compute Resultant Forces:

WALLFORCES + ACCIDENTAL TORSION

WALLFORCES - ACCIDENTAL TORSION

Wall \#	Wall Orientation	WALLFORCES - ACCIDENTAL TORSION								
		Direct		From Moment		Total (Global Axes)		Maximum Force of Direct, From Moment, Total		
		Fpx kips	Fpy kips	Fmx kips	Fmy kips	Ftx kips	Fty kips	Fx kips	Fy kips	Total kips
Wall	Principal	0.0	0.0	407.1	0.0	407.1	0.0	407.1	0.0	407.1
2	Principal	0.0	0.0	341.8	0.0	341.8	0.0	341.8	0.0	341.8
3	Principal	0.0	0.0	1.7	0.0	1.7	0.0	1.7	0.0	1.7
4	Principal	0.0	0.0	-750.6	0.0	-750.6	0.0	750.6	0.0	750.6
5	Principal	0.0	1249.3	0.0	-249.9	0.0	999.4	0.0	1249.3	1249.3
6	Principal	0.0	276.8	0.0	118.9	0.0	395.8	0.0	395.8	395.8
7	Principal	0.0	276.8	0.0	130.9	0.0	407.8	0.0	407.8	407.8

Fpx \& Fpy:	Direct force from P only $=$	$(\mathrm{Px}(\mathrm{RtX} / \mathrm{Sum} \mathrm{RtX}))$ or (Py(RfY / Sum RfY)
Fmx \& Fmy:	Force resultant from torsional moment $=$	$(\mathrm{Mt}(\operatorname{Rx}(\mathrm{Y}) / \mathrm{J}))$ or $(\mathrm{Mt}(\mathrm{Ry}(\mathrm{X}) / \mathrm{J}))$
Ftx \& Fty:	Total actual force of direct and torsion $=$	($\mathrm{Fp}+\mathrm{Fm}$)
Fx \& Fy:	Design force - Maximum of three forces above $=$	(Max of (Fp, Fm, Ft))
Total:	Resultant force along axis of wall (Walls Orientated to Principal Axes) =	$\left(\left(\mathrm{Fx}^{\wedge} 2+\mathrm{Fy}^{\wedge} 2\right)^{\wedge} .5\right)$
Total:	Resultant force along axis of wall (Walls Orientated to Skewed Axes) =	$\mathrm{Fx} / \operatorname{Cos}(\mathrm{q})+\mathrm{Fy} / \operatorname{Sin}(\mathrm{q})$

Estructure

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	10
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

Wall Forces Summary

Wall \#	Wall Orientation	+ Accident. Torsion Total kips	- Accident. Torsion Total kips	Design Maximum Total kips	Design Maximum Total plf	Capacity Total plf	Demand/ Capacity Ratio
1	Principal	553	407	553	8469	12587	0.67
2	Principal	465	342	465	8371	12587	0.67
3	Principal	2	2	2	523	12587	0.04
4	Principal	1020	751	1020	8140	12587	0.65
5	Principal	1249	1249	1249	20369	12587	1.62
6	Principal	438	396	438	23917	12587	1.90
7	Principal	455	408	455	24807	12587	1.97

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DH	11
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

CHECK SHEARWALL STRESS
LONGITUDINAL DIRECTION
BASED OH RELATIVE RIGIDITY SPREADSHEET
MAX FORCE IN WALL IS 8214 pIG in WALL (1)
SHEAR STRESS $=537^{k} / 8^{\prime \prime} / 65.3^{\prime} / \frac{3}{\pi_{m}}=29$ PSI
TRANSVERSE DIRECTION
BASED ON RELATIVE RIGIDITY SPREADSHEET
MAX FORCE IN WALL IS 24807plf IN WALL (7) SHEAR STRESS $=455^{\mathrm{k}} / 8^{\circ} / 18.3^{\prime} / z_{\tau_{m}}=86 \mathrm{PS} 1$
SHEAR CAPACITY $=2 \sqrt{f^{\prime} m}+p f y$

$$
\left.=2 \sqrt{2000}+\frac{0.2(40005)}{8(24)}=131 \mathrm{PS} \right\rvert\,
$$

D/C MAX $=86 / 131=0.66<1.0$ OK
CHECK DEFORMATION CAPATIBILITY OF COLLINS ON OPEN SIDE
ESTIMATE DEFORMATION AT OPEN SIDE
AT WALL (5) $V=1249^{k}$

$$
\Delta=\frac{V L^{3}}{3 E I}=\frac{1249000(120)^{3}(12)}{3(0.35) / 800000)(8)(736)^{3}}=0.0043^{\prime \prime}
$$

AT WALL (7) $V=455^{k}$

$$
\Delta=\frac{455000(120)^{3}(12)}{3(0.35)(1800000)(8)(220)^{3}}=0.059^{\prime \prime}
$$

AT OPEN SIDE

$$
\Delta=(0.059-0.0043) \frac{\left(125.3^{\prime}\right)}{69.83^{\prime}}=0.10^{\prime \prime}
$$

TO ACCOUNT FOR DIAPHRAGM FLEXIBILITY MLLTIPLYBY 2

$$
\Delta_{x x}=2\left(0.10^{\prime \prime}\right)=0.20^{\prime \prime} \text { SAY } 1 / 4^{\prime \prime}
$$

Subject	Prepared by	Page
ASCE 41-17 Tier 2 Evaluation	DBH	12
Project	Reviewed by	Date
UCSF Tier 1 Seismic Ratings	MTP	$6 / 5 / 19$

SHEAR CAPACITY OF COLUMN $\# 3$ TIES@ $12^{\prime \prime} 0 . C$.

$$
V_{m}=2 \sqrt{5000}(12)(10)+\frac{0.22(40000)(10)}{12}=24304 \mathrm{H}
$$

BENDING CAPACITY OF COLLIMN
4-\#9 BARS (60 kS)

$$
\begin{aligned}
& M_{n}=2(1)(60)\left(10-\frac{2(60)}{1.7(5)(22)}\right)=1059 k-i n \\
& V_{C A P}=\frac{2 M_{e}}{L}=\frac{2(1.25)(1059)}{120}=22063 \%
\end{aligned}
$$

HONUEER BENDING CAPACITY DOES NOT INCLUDE EFFECTS OF AXIAL LOAD, WHICH WILL MOST LIKELY MAKE COLUMN SHEAR CRITICAL

$$
\Delta_{\text {MAX }}=\frac{V \cdot L^{3}}{12 E I}=\frac{24304(120)^{3}(12)}{12\left(57000 \sqrt{5000)}(12)\left(12^{3}\right)\right.}=0.50^{\prime \prime}>0.25{ }^{\prime \prime} \mathrm{OK}
$$

[^0]: ${ }^{1}$ The evaluations at UCSF translate the Tier 1 evaluation to a Seismic Performance Level rating using professional judgment discussed among the Seismic Review Committee. Non-compliant items in the Tier 1 evaluation do not automatically put a building into a particular rating category, but such items are evaluated along with the combination of building features and potential deficiencies, focused on the potential for collapse or serious damage to the gravity supporting structure that may threaten occupant safety.

[^1]: ${ }^{2}$ For these Tier 1 evaluations, we do not visit all spaces of the building; we rely on campus staff to report to us their understanding of if and where non-structural hazards may occur.

[^2]: $\mathrm{J}=\quad$ Tosional Moment of Inertia $=(\mathrm{E})+(\mathrm{F})=624143115$ kip-foot

